

THE UNIVERSITY OF CHICAGO

INDEXING A MHTTAL CHARACTERISTIC

A DISSERTATION
SUBMITTED TO THE FACULTY
OF THE GRADUATE SCHOOL OF ARTS AND IITERATURE
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF EDUCATION

BY
KARL JOHN HOLZINGER 1
CHICAGO, ILLINOIS
SEPTEMBER, 1922

7195°

TABL OF COTTENTS

Section I. Introduction
a. Mental and Physical Ieasuroment
b. A Goneral Statistical Theory
c. A Suppostitious Example
d. Indexins a llental Charactoristic

Section 2. The Groups and Dota studiod a. The Groups Studiod
b. The Tests Used

Section 3. Test Administration and Scoring
a. Primary and Socondary Indox Variablés
b. Tho Difficulty Factor Iliminated
c. Vilethods of Administoring tho Testis
d. Authors' Plans of Scoring

Section 4. Methods Fmployod.

Part I. AIIAIYSIS OR THT INDEX VARIABIBS BY WIOLE SCALES
A. Comnarative Validity and Roliabilit of the Indexes

Section 5. Relationshirs betroen Index Veriables on the fimme Scalos

Section 6. Rolationships botwoon Scalos by tho Samo Indox Variable

Section 7. The Reliability of a Scals by Differont Index Variables
Section 8. Correlations with Are
Section 2. Correlations with School Marks
Section 10 . Summary of Reliability of Inderes for wholo Scales
B. The Discriminative Capacity of the Inderes

Section 11. Capacity of the Indexes to Discriminate betweon Individuals

Section 12. Capacity of the Indexes to Dincriminate between Groups
Section 13. Practice Wefect mith Repetition
Part II. ANALYSIS OF THE INDEX VARIABLISS BY COMPONENT TESIS Section 14. Intercorrelations of Variables for the Otis Comonents

Section 15. Correlations of the Otis Comoments with Age
Section 16. The Application of Roliability Tomule to the Component Tests

Soction 2.7. Surmary of Analysis by Comononts

Part III. SCORING FORIULAE
Section 13. The Linear Form, $S=a R+c l l$
a. Formalao with Eighost Volicity
b. Limitations in the Use of the Formia, $S=a R+c W$
c. Uso of tio Fommla, $S=\mathbb{R}+0$ Un

Section 19. Simple Ratios
2. The Correlation between Spoed and Accuracy
b. The Validity of Sim le Ratios as Scoring Indexes
c. The Reliability of Ratios as Scorinc Indeves

Section 2^{n}. General Sumary
Appendix A. Correlationstables for Releability Coefficionts Appendix B. Theorens Relatins to Correlations

Bibliography

Soction 1. Introcuction

A. Iontol me Ehy icel "oarmoonont

a-i of the ifficultios in mental moneuremont are duo to the foct that tho motion is nocosencily indiroct. This imbica vemomess not onlv in tho thins mensured, but also in tho procision of the renalt. song vhysical moncurem monte on tho other hand tre divert, mint possiblo a cloaror dofinition of tho traits monsured and reater accuracy of thoix dowormination. Tho caso of a boy to bo woichod and also tosterl far intollinonco will brinc ont this sontrest.

If tho boy is placod on the phymical senle and welroned. the monsuronght is recorded diroctly in objectivoly dofined mits, accurpoy of detormination depenain unon the instru-
 of the boy himelif at tho timo of the moimine will have no offect on the rojult. In case a montal xacuromont of intelLisonco ia requirod, it is nocearor. to majmit to tho boy a series of guontions to which ho mot resmond bofore a score for tho merelal brait may so abtained. Mas vory indirectneas of antroach Isods to embinaty romarine the treit mowsurad, end to uncertainty in the procision of the score. Thus in pessinm from whysicel to nome? mosuromont tio role of tho boy ins shiftod fren a possivo to ons active ono, thoroby cunnlicatinn tio rhiale nijociore.

It my bo pointox out biopir tiot thing nrovalure in tho onse of contiol monsurenonts acs pere alosoly neralled
the physical methoci. Units hevo boon ciofince and scalos constructed. Theso mite for the wort ax', aro functions of croun voriabilíy on purtiodar tymes of wherialo and consequalily lowe in socureoy end rimificmes whon ampled in indivikurn nensuremont. Me parallelisn in nothor has oven boon nersies so for sis to attomt to doternine "zero points" for combin montal abilitios so that " jast not any" momats of the irvits could bo wad as roforuco prints. In the case of the nosmuranont of hoat, tho zero on the Fahenheit thermomoter doos not moen "just no hoat," butt novertholoss servos $3 s$ a convoniont roforonce pointu Sixiluty a rood many of the formor nomious soro noints in monsal nonmrenont havo dianpearat, or hove moved un to the montion there they belons.

b. A Gmorel Stotistion Thoornh

The difficulbion briofly skntoheci in the above noram cranhs cumost tho ciosirability of some more ronoral mothod of anmpor; to tise mroblon of montri moanwoment, and indoed Guchs a whac has boon imlicitly issot in zomo of tho lator mork on tout roliabilit, wheliubu. In order to fix idoes, therefcic, cortain tows mill now bo definod so thet thoir moaniace rill is oloar theomelust the subsoquent discussion.

The tomn che roctrintio sill bo unod to dionoto the mhy-

 or thinmes each of thich mast posners the Guracteristic in muostion beforo any statistion? stucly is mossible. A man of

cortain hoirent, intellisence, and reajth fumishes an example of an individual with the three types of characteristics commonly studied.

The phesse of a charectoristic may be briefly described as the status of an individual with rospect to the character istic. This concoption is an imortomt ono because it is inm troduced for the purpose of distinminhinm; a particular thing from the number that may be attachod to it. Phases may be numerically or verbal1y expressed. Thus in describing the characteristios height and politioal affiliation of a certain man, the number 68 may bo attached to the phese in height and the word "Ropublican" to the phase in political affiliation. It is concoivable that a numerical schomo for the latter might bo worked out, but tho phases of political affiliation ner se would of course remain unchangech.

In order that a cheracteristic bo numerically indexed, it is desirable that its whases be arrensed in some order -. I. Iike the points on a line. If the linoar arrangement be, made, the trait may be temod a linear oidinal characteristic. For charecteristios such as height, an inrinite number of phases aro assumed, indexed by the real numbor system (donse sot). In the case of such charactoristice $2 s$ sizo of school class, homever, tho number of phases is finite, and the indexing is accomplished by assiming only integers. The distinction is sssentially that botreen contimuous and discrete sorios, the continuity and diserentness apvoaring in phase.

Pinally an incex veriable vill be described as a quan-
tity whose values are in onemto-one corrosnondence with the phases of the charecteristion invoroc. Beforo proceeding farther, the moaning of these various terns will be illustrater by means of an artificial examale.

c. A Sunnostitious Framle

Consider a set of on cubos of homerensous matorial. The problen is to describe these cubes by orcinary statistical procedure. Assumine that the size of the cube is the characteristic to be studied, somo modo of indoxins or index variablo narst be aclotod. Takine the acco as a first choice, the distribution may bo wiven as follows:

The rean edfo is clearly 3 , with correnponding face area 3 and voluno 27 in.e. $a=e_{s}^{2} \quad \nabla=e^{3}$.

A socond mode of indoring by tho aroa of a face gives tho distribution:

The mean Lace aree is now $10 \frac{1}{3}$ with a corrosponding edse and rolume approximately 3.3 and $30 . ?$ rospectively.

Again inderins by volume grivos:

The mean volune is 32 , with the corrosvoncing edse and area aporoyimatoly 3.4 and 11.5 . These rocults may be set forth in sumber form as follow:
$\xrightarrow{\text { TABIT 1. - TPANS ATD CORRTSPONTTTG VAIURS TOR CUBES IMDMXBD BY }}$

$\begin{aligned} & \text { Hode of Inderincs } \\ & \text { Index Veriable } \end{aligned}$	Vean and Corresponding Indexes		
	Baço	Aree	Tolume
Edse	$\overline{3}$	2	27
Arca	5.3	स. 0	33.2
Volume	3.4	11.5	$\overline{39}$

Inspection of these figures rove lis a complete inconsistency under the threo modes of indexing. Toreover the three distributions are quite different. Tho irequency nolygon accordine to edre is symetrical, thile the distributions for arca and voluno ero skowed towart the sramler values of the vricioble. It is also clear thet the cubes remained ot the seme nheses in the charocteristic size but that vexious modes of indexine save inconsistent results. The above examle thon illustrates the fact that althounh a set of thinms be maltorod in whase, tho form of the distribution and the statistical constants dopend unon the particular index variable gmloyod.

Figure 2. Distribution of
Grbes by Aree.

Pigure 3.- Distribution of

It noy bo well to point out briofly that tho inconsistoncies in the ebove examic are iue to tho rolationships betwren the index varizulos;i.e.

$$
\begin{aligned}
& T=0^{3} \\
& a=e^{2}
\end{aligned}
$$

It Wili be sufficiont to noto hore that similar inconsistoncies will exise whomere the relationshin between the index variables is othor thom Incer $(y=2 \pi+0)$. In the latter case the statistical constents will bo morel." wfectod by propor-
tionality factors. Thus whon heipht is meanured in inches and apein in contimeters, tho distributions will bo similar and all constints ousily convortod by tho simple linear relationship,

2 inch $=2.54+$ contimotors

d. Indoyinc a Montal Cnoractoristic

In muntal measurement the method is to set a body of materiol beforo a child and elicit certain responses from him. These responses are thon recorded and combinod in various mays to procuce what is inom as a score. lloreover these responses oxhibit considercible verioty under different modes of administering the testis. Tho boys took the Teman Group Test of Mental Ability winch is administered under the plan of keoving the time constant. Thoir rognonses may be set forth briefly as follom:

Seore (Author) Richt Attempted Frons Accuracy
John Henry 15° $\frac{155}{14}$ 175
150 50
10 .71
.03

The problem of indexine here inot unlike thet for the case of the cuisen. Intellirenco is tho cheractoristic to be indexed. and this is rossible by usince tho Mircta, "ronss, Attenpts, or somo combination of these incoz variajlos in the form of a scoro. It will be show lator thetr for the particular scale in question the autior's score is a rathon complicated funetion of tho vaxiables Richt and Wrone, but for the present it is sufficiont to note tho nossibility of wan a characteristic
being indexed in severel ways.
Guestions imediatoly oxise as to tho best mode of indexins. Is it best to use only one of the index variables available, or to conbize several of them, and if nore than one variable is used how is the comination to be determined ? These questions aro or nost vitel importance in mental noasurement, arising in one form or another whenever a now tost is devisod and stonderdizod. It may be pointed out at once thet this study does not attemt any general solutions for these problems, but by nalyzing a definite type of tost material, ain to carry the investination a little farther than is possible under incidental treatment in the construction of a pirticuler scale.

Intellirsence tost material vas choson for two reasons. First, co larpe bady of such data was available. Dr. F.S. Breed and Ir. W.R. Breslich made availeblo their excellent date for three intellirence tests riven at two mrade levels in The Thiversity of Chicago Hirh School. Ir. Guy Capps also twried over two thousand conies of the Terman Groun Test of Montal Ability, Forms A and Bodministered and ropoatod in a nunbor of Ranses hirh schools. A second reason for usine intellisonce teats imthis stucy was that tho stotisticel constants rosiltinm from such material are nore stablo than from any similar test data of which the rritor is aware. The violont and often inexplic-

[^0]ablo fluctuations in such constants as corrolation coeffi-

 oamlio bo pution son migois rasorte a a mordy of this

 ful cons"motin.

Doction " Trosis mat Dato
 a. min Trompestutacts

Fior an cnalytion atruit of Whin tyo it is dagireblo that

 as hoummoons as nowdibl: fopmotenbetivo swmios fron

 scores an tu botal moma

 Shactiveldemen the Jnivorather of Chiosero Tlima School. The ith

 year, there boine no oirntin maio in tac Laboratory Schools.

Group I Hish B differed from I Hich only by the addition of 10 punils in certain of the tabulations. While the groups describod are undoubtedly select. Hhey are unusually homoreneous is remards social status, training, experience With testr, and ace. The Trgest mroup, I Tigh U, consisted of 135 proils fron tho Rolla, Salem, and the Jemes public high schools of Konses, selected as describsd above.

The are distributions for these groups are riven in Table 3. The Kansas hich school prils :-ore a year older then those in The Univorsity Him School. Wile the latter were about a year and a half older thon the fth rrade proup. Tho distributions in orch case presont a fair deeree of Symetry, tho stendard deviations inoreasine with the size of the mour.

Age	Crade 7	I High A	I Hish ${ }^{\text {B }}$	I Hish C
119.0-19.5	-	-	-	1
18.5-13.0	.	.	\because	1
$18.0-18.4$.	.	1	2
17.5-17.9	\bigcirc	-	\because	6
17.0-17.4	\because	\because	2	8
16.0-16.	\cdots	${ }_{5}$	8	13
$15.5-16.6$	\cdots	$\overparen{8}$	3	13
15.0-15.4	\because	6	${ }_{7}^{7}$	18
14.5-14.9	2	3	10	21
1.4.0-14. 4	$?$	11	13	16
$13.5-1.8$	6	10	12	3
$\frac{13.0013 .4}{12.5-12.9 ~}$	16	4	0	6
$11.0-13.1$	10	3	3	3
11.5-11.9	8	-。	。	i
11.0-11.4	1	..	.	
Total	50	50	60	135
1 lam	13.8	14.5	12. 5	15.4
S.D.	. 8	1.0	I.1	1.4

b. The Iests Used

Three intelligence tests were administored to the Laboratory School proups by lrr. Breslich during the year 1920-21. The scales used were the Otis Group Intelligence Scale, Form A, the Terman Group Test of Montal Ability, Form B, and the Chicago Intelligence Scale, Form B. These tests wore all carefully scored by the writer for Attompts, Rirgts, Wrongs, and Accuracy, as well as for the autho or's score.

The data from the Kansas schools consisted of the Terman Group Test of Mental Ability Form B, and the same tests Form B given the next day. From this group, therefore, it was possible to obtain the reliability coefficients. The large amount of labor involved in scoring each paper for author's score, total Attermpts, Rights, Errors, and Accuracy, and carefully checking all of the work is largely responsible for limiting the sample to 135 cases When over $10 n 0$ were available.

In addition to the above data, school marks were obtained for 39 pupils in Grade 7. Yearly grados mero obtained for Mathematics, Fnglish, and History. These marks were converted into a rough scalo dividing pupils into seven catagories for purposes of corrolation. It is the belief of the writor that this degreo of accuracy in treate ment is about all such data warrent, inasmuch as these marks are intended to give only a rough ostimate of the
achiovement in the various subjects.
Section 3 Test Administration and Scoring

a. Primary and Secondary Index Variablos

In administoring and scoring a test the following variables mast of necessity be takon into consideration directly or indirectly: Difficulty, Rime, Attermts, Rights, Wrongs, and Omissions. This implies of course that the tost material consists of a series of items where the responses may be scored right, wronce or omittod. The six variables Iisted above will be referred to horeafter as Primary Index Variables and any function involving more than one of them as secondary index variables. Thus if Accuracy be defined as Rights divided by Attompts, such a score mould be termed a Secondary Index Variable. Also in order to save space these variables will usually be donoted by the initiel letter of each word. i. ©.,

D = Difficulty
$A=$ Attermts
T = Time
$\mathrm{R}=$ Ringhts
$\mathrm{V}=\mathrm{VITongs}$
$0=0 \mathrm{missions}$

b. The Difficulty Factor Eliminatod

The problem of the difficulty of the various items in the tests is one which mast be settled before proceeding farther. This problem is imlicitly solved by the authors of the tests wherein each item is given an oqual or point

Value with all others. Tro questions arise in this connec. tion: are the itoms of equal difficulty, and if rot should they be weirhted to obtain an accurato score? It is a well know principle in the theory of index numbers that the longer the series the less the effect of differences in the weights of the individual items. Test scores are, of course, really indor numbors. It may be readily conceded therefore, that the authors of intelligence scales consistinc of so long a serios of itoms, are quite justified in assigning equal woichts to each iten remardless of the better values which might be assigned on theoretical grounds. By way of justifyinc, this assumotion, an orample will be given of a short sories with considerable variation in weight from item to iten?. If differences in moight are not significant in so short a series, they will be ever less so for a very lons one. This method is that of the unfavorablo case.

Test 2. Of the Teman Group Intelligence Test consists of 11 items the response to each being a best answer appropriately checked. One hundred panils were selected who had. taken both Forms A and B a day apart. The test papers for From A were then scored for errors and rourh woights assigned in the usual may assuming a normal distribution of difficulty.

TABIT 3.-PRR CHNT FAILIGG AND WEIGTS FOR TURIAN TEST 2

Item	1	2	3	4	5	6	7	8	9	20	11
Per cont Failing	8	19	29	30	26	24	16	47	65	32	55
Weight	2	3	4	4	4	4	3	5	7	4	5

Noxt by exceodinely tedious computation a weirgted and an unweirgted score for each pupil was obtained. Thus a boy responding correctly to items 1, 3, 7, 2, and 11 on the test receited a weightod score of 21 and an unweirgited score of 5 , the number right. A correlation teble wes then made for weighted and unweinhted score with a resulting coefficient of $几_{\text {uw }}=.972$. The standard error in estinating unweighted from weirhted score, $S_{u}=.9$. The correlation botween the two unveichted forms of the test was then obtained, giving $\Omega_{A B}=.597$ The standard error Su in ostimating unvoighted form A from unveighted B was 4.8.

Thus the correlation betwoon two forms of the same test is much lower than that between weighted and unweighted scores on the same form. Also the standard orror of esti $2 a t e$ of unvoighted from weighted is about onewifth that fron form B. The wishting of the items then gives a degreo of refinement considerably beyond the roliability of the test itsolf i.o. correlation of tro forms. For 40 meighted and unwoighted itoms of differeat material the mriter obtained correlations of $\cdot 938 . .997$, . 295 with the correspondine reliability coofficionts betwoen . 85 and $\cdot 9$. All of these results point to the conclusion that for a fairly long series weigating of the separato items is unnecessary. A complete solution of the problom would involve experimentation with series of various lomgths, itoms of various difficulty, and populations of different size. Such exhaustive treatment is clearly beyond the scope of this study. It may be finally pointed out that a number of rocent achievement tests have appoared first with weighted items and later with woights dropped when it
was realized what a slight difference these mado in the rosulting scores.

C. Mothods of Administering the Tests

With the factor of difficulty eliminated tho scoring or indexing problom is greatly simplified. The plan may now be describod as the method of Unit Responses, the response to each itom being scorod as a unit point. Furthermore if entissions be neglected or counted as orrors. the ronaining primary index variables are reduced to Thmo, Attompts. Rights, and Wrongs with the relationships.

$$
A=R+W
$$

if omisnions be counted 2 exrors. This assurnption will be mode in a subsequent discussion. The number of onissions occuring in the tests usod mes neringiblo. It thus a pears that four variables, T, As R_{8} and W will heve to be stuaied. the last three not being indepondent. Also all scoring fore malae or soconciary index variables will be functions of these four primary indexes.

Two plans for administoring such tosts aro possible. One plan is to fix the number of Attompts allowing Time. Richtw, and Errors to very, thile tho second mothod is to fix tho Time, allowing Attomptis, Rights, and Wrones to vam $x y$. In tho last analysis then, only three index variables neod to be considored, tho fourtin boine arbitrarilly fixod by the plan of administering the tests. According to the first schome outined, one alloms all of the children to

finish tho test thus kaeping Atbompts constant. Tho time is then recorded by ston tratches or clock device and Rights and Trones obtainod from the papers. By the second plan a fired time Iimit is set for all the pupils, Attomots Righty, end Wronsm boins; then scorod on the test papers. The socond nothod is obviously simpler than the first, and is now followed in the great njority of tosts of all kinds. Certain tosts, it is tmo, neglect actual time but theso are not considered here. The material used in this study is 211 wiministered under the glan of fixime time giving the three primary index variables $A_{0} R_{s}$ and W.

d. Authors' Plans of Scosins

For the threo intellirence tests closcribed above, the authors have set forth scoring formulae for each test of the batiory. These formplee are obviously expressed as functions of the primary vexjables A, R, and W, while relationship $A=$ Rtw makes it possible to set dom the equations in torms of any tro of the variables. In the following tab. ulor scheme, therefore, R and Whave been omployed throuchout.

TABIE 4.- ATJPTODS' SCORTVG FORUJLAT OI MTTE THRTE SCALES

Scale	Test										
	1	$?$	3	4	5	6	7	8	9	10	
Otis Terman Chicamo	$\begin{array}{r} R \\ R \\ R-\frac{1}{2} W \end{array}$	$\begin{aligned} & R \\ & 2 R \\ & 2 R \end{aligned}$	$\begin{array}{\|c\|} \hline R-\Pi \mid \\ M-\\| \mid \\ \left\|\alpha\left(R-\frac{1}{2} \omega\right)\right\| \end{array}$	$\begin{aligned} & R \\ & R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & R \\ & 2 R \\ & 2 R \end{aligned}$	R R W	R	R	R	R ${ }_{\text {R }}$	

It will be soon froia tablo 4 thet two of the scalos consistu of ton costs each maile the thire includes only five. Considersble variation in the seorin formilee is also to be noted. The otin Scalo has B to this scored by R and only ome by $\mathrm{F}-\mathrm{W}$; Termen, on the other hand, scores four tosta by $R_{0} 3$ by $2 R_{\text {, and }} 3$ by Roll. For the Chicarso Scale two now formilac amper., R- $\frac{1}{2}$ II and R(R- $\frac{1}{2} \mathrm{~W}$). All of the rbove formiae are clearly spocial instances of the general linear form

$$
S=a(R+b W)
$$

Where e_{0} and b are constantis.
Tho simplicity of the otis scorins formzlac imediately raises the question as to the advisebility of scorin the other soales by the seme method. This rroblem is dism cus ed in the Iollowing sections. Another question concorns the fommice $F-W$ and $R-\frac{1}{2} W$. These formice are ermloyed for materiel of the Irue-Polso type and threwchoico variety, on the supposition that they correct for the element of guessing for such tests. This vroblen will also be teken un in sjmo detajl in lator aiscusmion. Finally the doubm lins of scores for individual tests is a roint that neods consideration. So far as tho meiter is able to dotemine, this boublinc mas offected bocause tho autior of the test felt such tests to be worth about twice as much as others, or manted to increass the total points nossible to some convenient number. The noint at issuc is the same as that
?
botreen weichted and unveirintad itoms. A graduate student made a stuody of tho Chicago Scale reparding this problem and found that the weiphtiner of the three tests as indicated in Table \& affectod tino corrolation wat sliphty. the coefinicient betwoen weinintod and unveiphted scores bem info. 20.

It thus ampears that Ricghts are the besis of most of the scorinc, fommiae employed on these tosts and thet other forms have beon used to corroct Right reswonses for guessing or to meinh the whole test becuase of the relative inm portanco in tho bottery makine uy the scole.

Section 4 Lothods Imployed

The conerel method of this stuxdy will first be to analyze the interrolationshins of the inder variables involTod, and thon to set up certain oriteria of good indexes and attomt to evaluato the variabies in toms of these. Obriously this is an indirect approach and it must necose sarily bo so from the natire of the rroblem. The actual tochniquo omployod mill involvo a considoreble amount of correlations for this is the bost method of studying the relationships botwon index variables Pro tests. For the case of the cubes described above the index variables
wore function IIy rolated.i.o.

$$
\text { Volume }=(\text { odge })^{3}
$$

Such functionality am only be apmooched by ompirical data, the correlation coefficimt givine the mast convenient approximetion for linear functions. Thns if scoro and Right, are corielated to the sxtent of .38 with rocression linear. there is a very close anoroximation to tho functionel rem lationship $S=$ KR. Tho chiel adventage of corrolation is that its gites a nunorical gatimate of tha olosenesin of such relationships or approach to linear functionality.

Incor variables will be analyzod by batteries and by single testus. Ase, school mats, and other intelligence tests will be used as criteria agejint hif to check the various fommiae.

A11 of the calculations bolot have boon prefomed by the writer and have bcon chooked with caro. Correlations were obtained by the usual product moment method with a specially desiomod correlation form. This was iound to cut dom the labor of calculation very matorially especially when "batteries" of coofficionts were recuired. Blakemen"s test fur linoarity was appliod in a fow cases with the rem sult that the writer belioves the groet majority of the tebles ownibitou sufficient linoority so es not to reduce the correlation boyond the limits of probeble error.

Pert I Lil be concormed with an malysis of the five index veriaibles by wole scales. By the indirect mothod of correlafion, the relativo morit of the fadexes will be detemminad. Part II mill involve a similar analysis of tho indivicual tosts of the scalos. In Part III certain form
+
1
$4+-\frac{1}{-4}=$
1

1

ulas will bo dovolonod and thoir velidity an reliability dotominod in momatical torns.

Part I Analysis of the Indox Vaxiablos by Tholo Scelos Ao- Comaratipe Velidity and Roliability of the Incoxos

The most diroct ajncoach to tho rroblom of indorincs will be th on waro tho mithor's nlm of nearine as oxe hibitod in mab? 1 with tho gita low whan of comtinc
 for whalo sen?os. This mocoturo wil mernel. the roletivo morit in roliobtith of theso simnler maman variables Than scrocral tosts are noven th pite s sen le score. The torm "Souln Scoro" is horo om loyod to dintinmuinh it from tost sojer theich till be naed to donote the score on ono of the comonenta molorm: un the totn? scale. Thus the otis Scole is mado un of in oomonent fertir.

Fiy tumos of cormerison vill bo nole in gvaluatine;
 a. Rolationabing botrem indor variagios ous tho same seale bo Rolstimsherpe botmern suelos by the se no indor vexieblos c. Rolinotitu of sealo ity afferent index varieblos d. Comrolntions ritid aro

- Compolations with eckool maths

Soction 5 Rolationchins botroons Indox Toxtrbios on tho 30 ma Soz 105

As poincos ark abovo than selationshens bot oon the vaf

```
L+2
```


20.
\square 1

\square
1 $t-2$ - $12(2)$ -
$\left(\begin{array}{ll}1 \\ 0\end{array}\right.$ $+\frac{1}{2}+$ -
en $+2$ 10,
$2+2+2$ -
$4=$ - -2 \square

```-
```

-
-

 1 1
$t=-2$
$t=-2$ 8 8
y
y 明 明 1 1

 \cdots \cdots \cdots $=$ $=$ $=$ - - - 38 38 38 $+$ $+$ $+$
$\square-1$
$\square-1$
$\square-1$ ne ne ne

- $5-\frac{1}{-2}-2$

```,
```

```tin
```

$y=11$

```
e-an
```
```8(20)
```



```+
```

18
ibles camzot in genoral bo functional for erpirical data such as those obtainod fron montal tosth, Novertheleas in will bo valusble to discovor the clobuone of linear rom letionship as indicatod by the corrolotivin oofficiont. These rosirlts oro sot fortin in Table 5. All of the corre lations more commtod on total Attortis. Rifghs. etc. for the ontive scoles. The agrement from grous to groun and scalo to sualo batwon corselations for tine same two variables is mtrikinc and may bo viowod with pardonable sate isfactuion by one who has viowod man inomlicable diffor onces for other typos of tosts and smallor groups.
TABIT.5.- CORERTAMTONS BETWHPN VARTABIMS FOR THE SAIT SCAIES

Scale and	Peirs of Variablas Comrelatod								
Group	S \times A $S \times R]$	Sxivis	S $\times \frac{R}{R}$	$A \times R$	4×173	A. ${ }^{\frac{R}{4}}$	R× 17	R× $\times \frac{R}{A}$	TV. $\times \frac{R}{A}$
$\begin{aligned} & \text { Otis } 7 \\ & \text { otis I B } \\ & \text { Tor } \cdot 7 \\ & \text { Chi. I } \\ & \text { Chi. I B } \end{aligned}$	$\begin{aligned} & +.73+.28 \\ & +.01+.22 \\ & +.30+.96 \\ & +.02+.26 \\ & +.15+.99 \\ & +.51+.25 \end{aligned}$	-.52 -.52 -.45 -.07 -.54		$\begin{aligned} & +.73 \\ & +.57 \\ & +.76 \\ & +.76 \\ & +.68 \\ & +.02 \end{aligned}$	$\begin{aligned} & +.21 \\ & +.3 n \\ & +.041 \\ & +.14 \\ & +.31 \end{aligned}$	4.13	$\begin{aligned} & -.51 \\ & -.57 \\ & -.30 \\ & -.51 \\ & -.32 \end{aligned}$	$\begin{aligned} & +.75 \\ & +\quad 77 \\ & +.53 \\ & +.73 \\ & +.59 \\ & \div .78 \end{aligned}$	$\begin{aligned} & -.91 \\ & -.93 \\ & -.04 \\ & -.33 \\ & -.93 \\ & -.94 \end{aligned}$
Moan	$+.591+.96$	-..03	$\pm .76$	+6.3	22	.	4	+. 62	-. 93

for example the correlation betweon athors" score and total Attombts for Otis Crado 7 is $.72 \pm 05$. whilo for Dtis I. Figh 3 it is .67 士. C5. By the fommala P.E $E_{a-b}=\sqrt{\left(P \cdot E_{a}\right)^{2}+\left(P \cdot E_{5}\right)^{2}}$ tho differonce botweon the two correlations may bo mritton in the form diff $=.05 \pm .07$, indicatine that a difference of .05 is unsimificant. To bo signifiont such a difforonce would havo to be 3 times its P. E. Similar comparisons botween grouns show that noarly oll difs-
onces may be accounted for by the fluctuations in samplinç. Moreover if tests made on the sane groun with difforent scales be considered, as independont samples, most Oif the inter-scale differences aro also insignificant. Tho tablo yields some very intorosting results. In the socond colum it will bo obsexved that the correlations betweon S and R are very him, tho meen of the six coefficientis boing to96. The extromely hich correlation of $\cdot 99$ for the Otis scale is duo to tho pact that only one of the tosts in this scelo is not scorod diroctly by Rishts. Tho above result, thoreforo, raisos a quostion as to the advisability of scoring this lone test differently from the rest. Moreotor the two corrolations of 26 for the Toman Scale indicato that evon with a fairly comlicated system of scoring, the amreoment botwoon authors' scoro and total Richts is extromely closo. With still more complica.ted formalan in the Chicamo Scale tho corrolations betroon S and R are amain voriy hirk. For tholo soalos, thom, a mere envoration of the total number of right rosponses givos a rosult very nearly pronortional to that obtained by tho use of various formalao for the individual tosts makine un the scale. It is to be notod, however, that the above rosult appoars to be velid when sinsle tests are pooled to give a totel score. For singlo tosts, chances in the scorine formulao heve marked effoct upon the correlations with oriteria as will be shom leter.
.

Accuracy fumishos tho next himest corrolation with Score, tho monn coofficiont boins t. 76 , whilo A and W cone next ith correlations of +.59 and -.50 respoctively. If Score he adopted as a criterion, thorerore, the bost indox variebles in ordor would bo Rigits. Accuracy, and Attompts or Fruort. It is rathor surprising that morely countince the Attompes or frrors on thoso tosts rives so good an indez of intcliimence.

In the last colum of the table a veny hich and conm sistont nemativo correlation is fornd botmons IV and $\frac{R}{A}$. This moans that a puril who maros a croat mony Gryorn is very inacsurate as moasured by the index $\frac{R}{A}$, or that such an indor voricible is an oxcoudingly good inossure of what is ordinoxily'y understood by Aocuracy. It is of some inm terest to note that tho bbove corcelation bocomes --6.00 when tho munbor of attemots is finod and tho rolationship

$$
A=R+W
$$

still obtcins. In this caso the functionol relationship

$$
R=-W+\text { coust }
$$

holds strictly, and this imines perfoct nogative corrow lation as is shom moro fully in a section bolom.

If the indor variable a be used as a moasure of spoed a numbor of interesting relationships aro brought out by the romaininc coefficionts. Spoed and accurecy are ovidenteo Iy uncorrolatod, the hichost comelation botween those two variables boing $\cdots .16 \pm . C 8$ which is insiminicant because it is mot oven hice its probable orror in amomn. loroover
tho difforoncos in sign aro such as to give a meen corrom lation for the colum of less than . A1. It will be furthor notod that R is correlated with A to the oxtent of +.69 on the arerage, wilo W with A fives a meen correlation of 4.24. An avorace correlation of t. 59 botrocn S and A wes proviously noted. These results indicato that the wey to get a hirs intelligence score iss to wouk fast. By working fast one is likoly to make more mistelens, lut he is much more Ifkely to get more items rifht and mice \& hirgor score then if he rorked wre slomly. Intellegence tostis hate frequently bsen callod "alortness" torts. The above find... ings indicate that with considersble aproriateness they micht slso be tomod "spend" testi. The ossumption thus far in doteminins, cenon 1 relisbilitw has boon that tho authon'score is the bost index of intelliceonce. If, on tho othor hand. Accuracy had boon asmund to be tho best index, the speed factor would hate beon oliminated, there baing no genoral tendoncy as indicated by the zero correm lation for a prupil to get a high or low cucuracy score by changing his spood. It will also be recalled that Aocuracy was highly corrolatod with Scoro (+.70) so that $\frac{R}{A}$ as an index variablo is fairly y consictont with S with out boing unduely influoncod an is the latter variablo by the undesinable spoed fector.

The average correlation of $-\cdots .49$ betwoon R and W means that the nore itoms the punil gots richt, the fever he is
likely to got mronge If Attomets aro constant tho above correlction bocomos -1. Ma as ins the caso of Wrongs ank Accurady. Finaliy tho veriaulos R and $\frac{R}{A}$ aro found to complato on the avorage to63. \& cooffionont which bocomes +1. On won Attompts are constint. (Thoorom 3 Appondiz) $\frac{\text { Sooticn G. Rolationshins botrom, Sonjos be the Same }}{\text { Indot varizDte }}$

Tho relationshins botreen inder veriablas on the Namo scalo hevn been discussed in the mrocedine soction. with tho rosult that the ronoral ordom of merit with score as a crit rion is Richts, Acouracy, and Attempts or Errors. Tho variable R possossos a sim? ioity which considurod in comection with ith cioso ame enent mith S sumestis that it minht weII be substitutod for that variable in inderins by battorioss of testn. The inder $\frac{R}{A}$ mas found to be in close arcoomont sith S and R and to possoss tho adventoce of being unafeotoc by speoci.

Tho noxt procedure will be to evelusto the index variables indiroctly by dotermining tho correlations botween nairs of scelos indorrod by tho tame vertebles. Th closeness of this comespondonce mill cive a neasure of the effectivonoss of the norticular modo of indowing. The fomer comarison was intor-jariablo: the resent is intortest. Table 6 gives these rosults for grouis I Ifich B and Grade 7. Comerison of this table with Tablo 5 reveals the fact that the corrolations in the Comor ase much more nem arly the same size. All of tho coofficionts aro signifio cant, whilo there are fow of the difforencos betweon any
two which may not be attributod to sampling by the usual mothod. The means for tho colums and rows of the beble brine, out the stability more clearly inasmen as tho dow wiations from these ore in most cases vory slight.

The xeally surprisine resilta extibited by this table axe indicated in the colum of means for the various in deres. Here it appoars that with inter-scale correlation as a critorion, S, R, R, and Wi aro all about squally good for purposes of indexing while A is somenat poorer than the rest. To discover aimost as himh a coriolation between tro intolifgonce scales by morely tabulatine, total errors as by using the atthor's score or total Rients is at first somewnet suxprising at is a closer arreomont thon might bo expocted from tho averace correlation of -.58 betweon S and W from Table 5. Intor-test correlation gives a moasure of the extont to which two tests agree in moasuring the sume characteristic. From Table 6 it oppears that this agreenent is about oquslly olose when any of the four index Tariables is amployod, tho goneral ordor of norit boins indicatod in the tablo as S, R_{0}, W_{R}, and A. This ordor, it will be racailod, is in harmony with that found in the precedine section. It may finelly bo pointod out that the lock of variability anong the coefficionts strongly suggests that combining these index variables as in the case of S will give but slîmhtly botter index whon batteries of tosts stach as these are om 1 yed.

Index Tariante	Pairs of Scalos and Crouns							
	Terwn \times Otis		Tomax xhic.		Chiorotis		1H0an	Onder
	E1.	H.S.	T2.	H.S.	II	2.		
Score Attormes Rights Trons Accuracy	$\begin{aligned} & +.72 \\ & +.66 \\ & +.73 \\ & +.72 \\ & 4.70 \end{aligned}$	$\begin{aligned} & +.83 \\ & +.72 \\ & +.82 \\ & +.83 \\ & +.88 \end{aligned}$	$\begin{aligned} & +.68 \\ & +.50 \\ & +.59 \\ & +.6 n \\ & +.61 \end{aligned}$	$\begin{aligned} & +.76 \\ & +.46 \\ & +.71 \\ & +.69 \\ & 4.77 \end{aligned}$	+.76 +.50 +.78 +.65 +.66		$\begin{aligned} & +.76 \\ & +.56 \\ & +.74 \\ & +.69 \\ & +.73 \end{aligned}$	1 5 2 4 3
Hoan	+. 71	+. 82	+. 60	+. 63	+ 67	+.71	. 70	

Soction ir The Reliabilitor of a Soale lum Dipforent Indor Varis.6105

Anotion mothod of studying tho renutivo morit of the different insox variobles is to cberin the reliability coefficients for a scalo undor osch of the indexes. Group I High C was used for this numposa. It mili be rocalled that this groun consisted of 235 purins tho took Fom B of the Permen Sowle and Foris A of the same test on the following day. The roliability coofficionts in this case aro gitun by the correlations betwon tho variables on the two forms of the scale. Thase corrclations are givon in Table 7 with the contingency tables prosuntod in the eppendix.

Variablos	Roliability Coofficiont
Score Abtumsis 2f cht Veracs Aocuracy	

It is at Guen amerent that bito entruz 's score has tho himbut rolfability lith a coerficient of .908. A glanco ats the comesponding corrolation tivlo in the enpendir will give this romuli more monire. Hese the lincarity of regression is ats moe apharat, chat the remariable agrocmont oxibitod in graphioal form. Closo correo spondonse of this tipe appoers to tho mintor 23 one of tho most מignificant achiovaments of standaruized tosts. Just what the tosts do teasure or index is ofton anbiguous, but to indoze any montal ohareotoristio witin inubla a higin docroo of relicbil: ty is in itsoli a most notoworthy achievemont. It should also bo borne in mind that all such reliability coofficisnts (and indeod all such corrolations) depond upon the group. Solection will in general tond to reduce such comolations winio heterogeneity due to such factors as aco ilij tond to inoronso it.

Roturning to tho romainine coefercionts in tho above
 variabies $i s, S, R, \frac{R}{A}, W_{0}$ and A. This is procisoly the order obtainod by the method of inter-tost corrolation as shomn in TabIo 6.

If the symbol $\Omega_{x x}$ be employed to donote the roliability coofficiont for a tost indoxod by tho variabl, X, tho diferonces botweon tho correlations in Table 7 may be oxhibited as follows:

The formia used for calculating the probable exrors of the differoncos is.

$$
P \cdot E_{a-b}=\sqrt{\left(P \cdot E_{a}\right)^{2}+\left(P \cdot E_{b}\right)^{2}}
$$

The small difforencos betweon the reliability coefficients for S and R is insimificant, while the romaining diffore onces ore sufficiently large in comparison with their probable orrors to be significant. Thus from the stanapoint of reliability the Terman Scalo is indoxed oqually well by author s score or total rights, and noxt bost by accuracy. A roliability coofficiont of 74 is gonerally considered hirgh: and it is remarkable that total orrors on the two forms should correlate to such an oxtent. The difforonce betweon $\Omega_{s s}$ and $\Omega_{w w}$, howevor, is over five times its probable error so that the roliability of errors as an index is significantly loss than for score. Similaxly Attompts fumish a mach loss reliable inder then Score, Rights, or Accuracy.

In this part of the study no attempt is made to analyze the individual tests making up the scales. Novertheless it is interesting to note from Tablo \& that three

of tho Tomm tosts ero seorox Roli, theroo nt ned four by \mathbb{E} oino. Tho difforonco in tho rolialbility ocofiliciont $\Omega_{\text {ss }}$ undor this ningo and Rrk by axantine morom
 type $3 R$ ond $\mathbb{R}-1{ }^{\prime \prime}$, thus appocis to havo no offoct on tho rolingsility of tho totel scomo, and thour uso for auc. sealos is open to curestiono

Soction 8 Comelations with Ace

Tho acy foctor is almay of intorost mens study
 butions in half-yonr intervala, chows rangos for tho vim rious prous fron four to oiftityous. In Table 6 , tho corroletions botroon acy and tho ford inioz variabios ore givon for Grede 7 and I MEg Bo A cozrsteoney in thoso coofficionts is at onco apmaronte the momn corrolation of -. 42 botwoon aro and scoso indicatos fint tho youry or puils aro bremtor than tho older ones within the semo crodo croun. Sindarly the mocan corrolntions w.38. $-.22_{0}-$ - 26 ond to 20 ghom that the youregor puyils got moro itoms sirtit, ero moro sccurato, aro spoodiex, and mako fowor orroris than tho oldor chilidroz.

要开 $11=$

TABLIT 8.- CORRETATIONS BEPUTEM AGT AMD IIDEX VARIABIES

Scale and Group	Aco with				
	Score	Attompts	Richts	Wronss	Accuracy
Otis 7 Otis IB Teman 7 Termen IB Chiscago 7 Chicary IB	$\begin{array}{r} -.41 \\ -.40 \\ -.47 \\ -.39 \\ -.39 \\ -.39 \end{array}$	$\begin{aligned} & -37 \\ & -.27 \\ & -.22 \\ & -.21 \\ & -.21 \\ & -.30 \end{aligned}$	$\begin{aligned} & -.37 \\ & -.39 \\ & -.40 \\ & =.37 \\ & =.35 \\ & -.39 \end{aligned}$	$\begin{aligned} & +.06 \\ & +.27 \\ & +.17 \\ & +.28 \\ & +.20 \\ & +.24 \end{aligned}$	$\begin{aligned} & -.24 \\ & -.32 \\ & -.27 \\ & -.34 \\ & -.33 \\ & -.26 \end{aligned}$
Mean	-. 41	-. 236	-. 38	+. 20	-0. 29

The superiority of tho youncer child is evident, thorofore no mattor which indez is omployed for the tests.

When arranced according to the size of the correlemtion with ago the order of the index variablos appears from the means as, $S, R_{3} R_{\text {a }} A$, and TV. The threo variables Scoro, Rights, and Aceuracy rotain the ordor found in the previous soctions. Moreover the moan correlations for score and. rights with argo are very noarly the sarns, so that the sum poriority of S over R as an indor is again slight if any. The usual sampling formala reveals no difference in the correlations that is of staíistical significance.

Similar corrolations are given in Table g for tho laxeest group. The cooficionts, though somewat smallor ore in hamony with those of the mrocoding table. The dom orease in size is probably due to the groater rance in aço.

TABIT 9.- CORPELATTONS OR INDEX VARTABITS VITH AGB FÜ TERTAN SCALE FORM B

Croup	Ace with				
	$S \cos \theta$	Attompts	Rightos	Wrongs	Accuracy
	$\begin{aligned} & 47+.07 \\ & 39 \pm .08 \\ & 16 \pm .06 \end{aligned}$	$\begin{aligned} & -22 \pm .09 \\ & -\quad 21 \pm=09 \\ & -14 \pm .06 \end{aligned}$	$\begin{aligned} & -.404 .08 \\ & -.37 t .08 \\ & -.36 t .06 \end{aligned}$	$\begin{aligned} & +17 \pm .09 \\ & +.28 \pm .09 \\ & +.03 \pm .06 \end{aligned}$	$\begin{aligned} & -.27+08 \\ & -.34 \pm \\ & -0.08 \end{aligned}$

By incroanins the range through soveral grades the corrolation becomes nositive. In fact hoterognoity or lack o: selection appoars to have a curious offoct on correlations with 2sco. Tor childron of exactly tho same age tho coofficiont is of course zero: when the range is increased to soveral yoars as in the typical graie grour, the corrolation is nogative. As the range in age increases, the coOficiciont approaches zero arain, and finaliy passes through this value to positive values of considerable size if sereral grades are pooled to give a long range. The theoretre ical curve for the correlation coefficient will thus have on appoarance resombling that in Figure 4. The nomative corrolation for the are interval of has been accounted for by the appearance of older rotarded childron in grade groups. This oxplanation, while Mousible, does not seem setisface tory for groups such as crado 7, which is usually froo from childrsn of this type. The posttive correlation increases from A as the age span is lengthoned.

$$
\begin{aligned}
& =
\end{aligned}
$$

Tho 4 Tharrotian aurvo fow corrolation with ano

Botion 3 Corratotions mith Solizo? tryss

Whilo school mats aro obviously in courato oskin.t. of the aisizity or achioroment of upiles novorinoless thoy
 romulb. Thoir rolutive inoucuracy has boon grossly oxagcoretal. Burci, Proctor, Kol1ys, ond others hove shom that the prollichive vaino of louds maxis is ofton as hifs an
that from intellicence or achievement tosts. 1ioreover in the present comarisons the question of acourecy is not of groet inmortanco inasmich $2 . \mathrm{s}^{2}$ auch ince is checked. against tho same sch ol srados. Whetovo maroliobility oxists in the marks, therefore, 1111 affoct all correlations alike.

TABIE 10 - CORRRTATIONS BETVHEN TARKS TN MTGLISH AND THE INDIX VARIABTES ON TTE THRED SCATES

Soale	Maxles in Fnolish with				
	Score	Attempts	Rimbis	Wrong	Accuracy
Otis Temmai? Chi casc	$\begin{aligned} & +.56 \\ & +.83 \\ & +.52 \end{aligned}$	$\begin{aligned} & +.36 \\ & +.3 C \\ & +.27 \end{aligned}$	$\begin{aligned} & +.57 \\ & +.56 \\ & +.53 \end{aligned}$	-.29 -.39 -.38	$\begin{array}{r} 4.46 \\ +.46 \\ +.48 \end{array}$
IToan	+. 57	+.31	\$. 5.53	-. 23	t. 47

 INDEX VARIABIES OIV MIT THRTTR SCATHS

Scele	Marken in History with				
	Score	Attempts	Richts	Trume	Accuracy
Otis Torman Chicaro	$\begin{aligned} & +.53 \\ & +.63 \\ & \div .48 \end{aligned}$	$\begin{aligned} & +.17 \\ & +.24 \\ & +.17 \end{aligned}$	+.54 $+.6 n$ $t .41$. .45 -.38 -.37	$\begin{aligned} & +.56 \\ & +.53 \\ & +.47 \end{aligned}$
170an	*. 55	+. 12	*. 52	-. 40	+. 58

 INDEX VARIABIES OI THE THRET SCAIES

Scalo	Markes in lathomation mith				
	Scoro	Attompts	Richts	Wrons	Acouracy
	+.60	+.45	+.61	-.24	+.40
Tomman	+.54	+.39	+.77	-.26	+.36
Chicaro	+.47	+.29	+.36	-.17	+.27

Correlations of the five inder voriables with 解elish, History and lathomatios are civon in Tables 10.11, and 12 resnectively. Tnspection of the evoraco correlations for these trables shom a close emreenont for the three subjects studiod. The coofficoints for Harlish are himest, Tisitory noxt, and lathomaties lowost, but tho difforences are slight. In all three tablos Score has tho hichost correlation with school marks. The now't hirchest corrclations in order aro Rights, Accuracy, Trongs, and Attomots. Mhis is precisoly the order found in the section on reliebility. Thus if school work be measured by maniss the relative morit of the vorious indexes ior prediction is S, R, $\frac{R}{A} W$, and. A. As in the precoding soctions, correlation invotving S and R aro more noarly oqual than the others.

Soction 10. Stumary Ior Reliability of Indoxes for Whole Scalos

For wolo scalos consisting of battorios of tests, the authors' formula appoar to be slifhtly superior to total Rimhts as as index. Table 13 mives the averame correlations and differencos in foror of 8 (a,bsolute values considered)

TABITH 13. STMMARY OF CORPRTATTONS POR SCORT AND RICTIS

Variablcs Correlated	Averaxe Coefficiont	Differonco in Pavor of \$
Score and Rishts	+. 26	
Scales Incored by icoro	*. 16	
Scolos Incoued by Rinhts	+ ?	. . 02
Tommen Tocins 3 and A by S	.	
Tormax Proms B and A by A	+. 20	. . 03
Arge with Score	- 11	
Ano mith Richts	-.33	. .03
larks with Score	+. 25	
Marks with Kirhts	+.53	. 0.03
Total Difforence		. 08

The extrome simicity of scorsme by Pichis, howevor, mould soom to more thar outroirh the slimt civntaro in fuvor of moro compicatod formulec.

Accuracy has been nhown to hovs the pooxlier edvantm aspe of beine unffecter by shoed, one at tha s. no time to possons himh roliebility. Tho summary corrolutions in favor of Score aro show in Table 11. Tho totel differ-

TABIT: 1. $4 .-$ SUUMARY OE CORRDIARIONS FOB SEOLJ AMD ACCURACY

Toriablos Cormelatod	Atrorache Coofficiont	Difforence in Fa,vor of S
Score and Accuracy Sceles Tndezod by Score Scalos Indeyes by Accuracy Torman Forms B and A by S Terman pome B and A by $\frac{R}{T}$ Aco with Scorc Are with Accurcacy Morks rín Scose Warks with Accuracy	$\begin{aligned} & +.76 \\ & +.76 \\ & \therefore .73 \\ & \div .31 \\ & +.84 \\ & \cdots .41 \\ & -.03 \\ & +.5 .3 \\ & +.44 \end{aligned}$	$\begin{aligned} & . .03 \\ & \cdots . .07 \\ & \cdots . .18 \\ & \cdots . .11 \\ & \hline \end{aligned}$
Total Difference		.33

$2+2$

- ian

\qquad
$2-1+2-2+2$
2
\qquad
\qquad $\xrightarrow{0.41}$
oncos in favor of S are shom in Tablo 14. The total differonces in iavor of S indicates that Accuracy is som what less setisfaotory than R acoording to the criterin employed. lloseover it is a more involvod complicated inder: than R, but not so involvod as S.

The results for Errors are presentod in Table 15. The general morit of Wrong as on indox is less than that of the procoding variables. Ererotis, however, have a surprisingly high reliability and aro utilized to adventarge in formalao discussed in tho following soctions.

Variables Corrolatod	Avorace Coefficiont	Differonces in Fevor of Score
Score and Wron Scales Indezed by Score Soalos Indezod by Wronges Torman Forms B and A by S Terman porms B and A by Aro With Score Age With Wrongs Marks With Scoro liarks with Wrongs	$\begin{aligned} & -.58 \\ & +.76 \\ & +.63 \\ & +.91 \\ & +.74 \\ & -.41 \\ & +.20 \\ & +.55 \\ & -.32 \end{aligned}$	$\begin{aligned} & .07 \\ & .17 \\ & .21 \\ & .23 \end{aligned}$
Total Differonce		. 68

Attempts, which are frequently used as an inder for tosts appoar to have tho least morit of any of the varm iables discussed. Table 16 gives the averages and differonces as in the above tables. Tho total absolute difforonce in favor of S is Eroater then for any of the rroceding variainlos.

TABIT 16.- SUMMARY OR CORRETARIONS FOR SCORE AND ATTE PPIS

Tariables Correlated.	Averamo Cospriciont	Differonce in Favor of Scoro
	$\begin{aligned} & +.76 \\ & +.56 \\ & +.56 \\ & +.91 \\ & +.68 \\ & +.41 \\ & \hline . .26 \\ & +.55 \\ & +.08 \end{aligned}$	$\begin{array}{ll} \cdot & .20 \\ - & .23 \\ - & .15 \\ - & .27 \end{array}$
Total Difforenco		. 85

B.- The Discriminative Capocity of the Indexos

In addition to tho general. roliabilitity of an indox, anothor valuable proporty of succh a vaxiable is the oxterto to mich it makes vossible discrinination botween individuals and botwoon groups then real difforences exist. A test win oh rovoals too narrow a range for a given group fails to discriminate botmeon tho individuals of that grouj. Such undistributod score is a defect in the teat or in the mode of indexing Similarly a tost or mode of indexing which fails to discriminate betmeon croups is defoctive if the charactoristic is in reality different in type from group to group. Thus a best which shows all individuals in Grade 5 to possess the sane ability, and at tho same tino reveals
an
no difference botweon moan scoren for crode 5 and 6 je lacking in individuel and in group discrimination. The fundamontal essumption is, of coursu. thot such individuais and crouns do vary and that failure to detect the varietions lies in the particular mode of indexing the trait in question.

Soction 11 Comacity of the Indexes to Discriminato botwoon Individuels

Disurimination betwoon individuais of a group is bost studied by means of frequency distributions. In the prose ont study, howevor, such an elaborate method as this is unecossary inasmuch as intelligenco tests are of surficiont longth to givo a fairly good spread for all indoxes. The distributions for $S, R_{g} A_{s} W_{\text {P }}$, and $\frac{R}{A}$ in the Appendix are typical of those for all threo intolligonce scales. The standard deviation for these variables are givor in Table 17.

TABIE 27. - STAIDARD DEUTATIOTS FOR TERTAM OORTS A AND B WITH GROUP I EICHC

Tariable	$\sigma^{\text {B }}$ (first)	σ_{A} (socond)	$\sigma_{B}-\sigma_{A}$	Disf:P. Modit
Score	33.79 ml . 39	30.91 ± 1.97	2.80 ± 1.00	1.3
Attompts	24.12 ± 0.89	20.63 ± 0.85	3.49 ± 3.30	2.7
Richtas	26.95 ± 1.11	23.54 +1.97	3.41 ± 1.47	2.3
Wrongs	19.73 ± 0.81	29.66+. 81	0.074.1.25	0.1
Accurecy	$0.23 \pm .01$.182.01	0.01 ± 0.01	1.0

There is somo evidence that tho e is loss variability in porformance on the second trial (Fom A) thon on the firet (Form B). This is incidentally a bit of ovidenco to the
effoct that equal practico for a group of pupils tends to bring them more closely together about a central typo, a result contrary to that held by some psycliologists. The differences, however, are slight, although in one direction, and the two forms of the tost may not be oquivalont for this purpose. The result is then moroly sucgestive.

The standard deviations for A, R and W in Table 17 admit of direct comparison inasmen as they are oII expressed. in point or response units. The order of disoriminative cipacit: for these variables is then R, A, and. W. The indexes S and P are expressed in difforent units and honco may not be compered with the rest. Constdered on the point basis howner. author's score has the creatost capacity for diso crimination botweon individuals on account of the woichting and formulao invelved. Tho standard deviations for Grade 7 and I High B are also given in Table 18. Tho rosults agree with those of the precoding table.

TABLE 18. - STANDARD DEVIATIONS FOR THE THFEE SCALBA

Scale and Group	Standord Deviations for				
	Score	Attermets	Rights	Frong	Accuracy
Otis Grade 7	19.91	18.00	19.22	13.48	
Otis I Hich B .	22.40	18.02	21.55	17.02	$0 \cdot 8$
Temen Grade ?	23.52	19.17	18.52	12.46	. 08
Toman I Hip ${ }^{\prime}$ B	26.87	18.39	22.34	14.87	0.09
Chicago Grade 7	10.52	6.23	6.15	4.60	. 08
Chicaro I High B	12.03	$5.8 \cap$	8.24	6.50	. 10

In order to study the variability of a group by a statistical measure independent of the units employed, Poarson's Coofficient of Variation, $V=\frac{100 \text { S.D }}{M}$, was omployed. The results for two groups appear in Table 19. It is at once apparent thet whilo T is indepondent of the units employed it may nevertheloss lead to results Which are confusing. The largest cooflicionts of variation ore for $\mathrm{VI}_{\text {, }}$ an index which might readily be supposed to furnish the least variability. The rosult is brought about by the relatively large standord deviation of W! (Table 18) and the relatively low mean (Table 20, below).

TABI出 19. COETTICIENTS OR VARIATION FOR THE THREE SCAIES

Scale and	Coofficients of Variation for				
Group	Score	Attompts	Rights	Wrong	Accuracy
Otis Crade 7	14.?	10.8	12.3	36.2	9.86
Otis I Hich B	11.8	9.5	14.2	45.6	10.35
Teman Grade 7	18.8	13.8	16.6	45.5	9.85
Tomman I Hich B	18.7	11.5	17.4	47.7	11.37
Chicago Grade 7	19.5	11.7	14.6	43.0	10.71
Chicago I High B	21.7	10.	18.8	48.1	13.18
Tioan	17.8	11.1	16.0	48.3	10.89

The coofficiont of variation. dopending ass it doos upon the position of the distribution on the scale, is likely to give 2 very misloading result for distributions such as these above, and should in general bo avoided for comparisons of this typo.

Section 19 Capacity of the Indexes to Discriminate botwoon Giouns

Table 20 gives the means on the three scales for Grade 7 and for I High B. It is at once evident that the second group has the higher mean for nearly all of the indexes. Accuracy, however, appears to be nearly consistent for all three scales and for both groups. From the stand. point of discrimination, thorefore, this index is of littlo value. The corrolation tebles in tho Appendix show a considerable spread for Accuracy thilo the constants from Table 17,18, and 18 indicate the extent of this variability.

TABIE 20.- MFANS FOR THE THRIE INTELIGOTCE SCAIES

Scale and	Means for				
Group	Score	Attempts	Rights	Wrong	Accuracy
Otis Grado 7	139.8	177.0	139.6	37.2	0.80
Otis I Kigh B	151.3	189.3	153.0	37.3	. 80
Terman Grade 7	125.0	138.8	111.4	27.4	0.80
Termen I Higin B	143.7	152.5	128.3	31.2	0.81
Chicaco Grade y	54.0	52.8	42.1	10.7	0.80
Chicago I High B	55.4	57.2	43.7	13.5	0.76

Individuals within a group, then, difeer considerably in accuracy. When the above inter-group comparison is mede however, Accuracy is found to be relatively constant. These resizlts indicato that the growth curve for accuracy ordered relative to age will be relatively flat in come porison with ordinary score. This thole mattor will be
--

 $4-5+2$
\qquad
\qquad 4.5
line
E \square

$-1+1$ \qquad

- 4210 \qquad -1

fully treated by the writer in a forthcoming article on Crowth Curves undex Differont Modes of Indoxing.

In order to bring out such inter-group differonces more clearly they are presented in full in Table 21. The quantity $\frac{D}{\text { P.E.dyt }}$ denotes the inter-meen difforence divided by the probsible error of this difference calculated in the manner explained in preceding sections. Such a quotient gives a convoniont indor of disorimination. Indexes loss than 2 or 3 shom thet the discriminative capacity of the tost for such variables is not significant.

TABLP 21.- DISCRTMTNATIVE CAPACITY OF THE INDEXES AS SHOMT BY INTER-ITAN DIFFIRENCRS IN GRADE 7 AND I HIGI B

Scele	Inter-Mean Difference and Probable Frrors for						
	Score		$\frac{\text { Acternts }}{\text { Difflp. }}$	Rights		Wrong	Accuracy
	Dife	P, T.		Diff	P.I.	Difi.P.E.	Diff.P.E.
Otis Terman Chicarso	$\begin{gathered} 11.5 \\ 18.7 \\ 2.4 \end{gathered}$	2.7 3.2 1.5	$\begin{array}{r\|r} 12 \cdot 3 & 2.3 \\ 20.3 & 2.4 \\ -4 . A & 0.8 \end{array}$	12.4 16.9 1.6	2.7 2.6 7.8	$\begin{array}{l\|l} 0.1 & 2.0 \\ 3.8 & 0.8 \\ 2.8 & 0.7 \end{array}$	$\begin{array}{r\|c} 0.01 & \because 0.01 \\ -0.04 & 0.014 \end{array}$
$\text { Ave. } \frac{D}{P \cdot E .}$	3.	. 7	6.5	。	. 3	2.1	1.3

The five variables in order of their capacity are $A, R_{8} S_{s} W$. and R. Thus the groups studied show the greatost difference with respect to speod and the least with respect to accuracy. This result is quite in agreement with comon teaching experience. Pupils can be oasily made to hurry, but it is exceodingly difficult to train then to bo accurate.

Whilo A shoms tho loest canacity for inter－group discriminotion，it is not superior to tho other vari－ a．bles for difforontiating individuals．Score and Rights agein appear to be superior to the othor indexes for individual discrinination，a orowty which is more impor－ tent than intor－groun difforentiation．

Soction 13 Practice Pifoct mith Ropotition

Form B of the Terman Scale wan given to group I Highi C and Form A of the same tost given the following day．Assuming that those two forms are equally difficult a practico effect for oach of the voriciblos may be noted as in miole 22．There is a positive difforence between the means for each of the variables excont Th．This last negative difference also means en improvemont on second． trial，so that tho practice effoct is indicated on all of the variables．The last colum shoms tho significance of this gain．The indexes R, A, S ，and $\frac{R}{A}$ ，reveal gains that almost certainly cannot be accounted for by chance fluctuations，wile the change in 7 is in hamony with that of the othor variables．Irrers and Accuracy show chances of less simificance for prachice effect．

TABIT no－IMANS FOR TPRTAN FORNS A AND 3 TIUE GHOUP I HINH C

Variables	$\mathrm{Ma}_{\text {a }}$（second）		$\mathbb{I}_{A}-\mathbb{E}_{B}$	Diff：P．Todut
Score	$101.744+1.78$	$84.11+1$.	$17.63+2.55$	6.7
Attemots	161． 01.20	148．10\％1．40	12.8121 .04	7.0
Rights	102．4土1．37	87.154 .06	$25.36{ }^{2} .08$	7.3
Wrong	58．50玉1．1圭	61．0451．14	-2.45 ± 1.60	－1．5
Accuracy	10．01	23． 2	H0．01	4.4

Analysis of the Index Variebles by Component Tests

Tho authors' plans of scoring givon in Table 3 show that 9 of the testis making up the otis SGale are scored by the iommia S. These nino tests wero therefore chom sen for analytical study. The stability of correlations for whole scales has been shown in Part I. In the followm ing soctions the intorcorrelations of the component tests show a hion degree of consistoncy. The coefficients in general are lower than for wholo scales but they indicate the seme relationships botwon index veriables. It will also bo shom that poolines tests increeses both the validity and the reliability of the indoxes, an effoct which may be rouchly forecast by certain prodictive formalae. $\frac{\text { Section } 14 \text { Intercorrelations of Variables for the Otis }}{\text { Comonents }}$

The correlatiuns betwoon Index Veriables for the same corponents aro givon in Table 23. In the last line of tho table the coofficients for all mine tests pooled are given for comoarison.
\ldots

Test	Crade 7			I Fiigh		
	A. $\mathrm{B}^{\text {P }}$	A \times W	R.17	A \times R	A $\times 7$	$\mathrm{R} \times 17$
$\begin{array}{r} 1 \\ 2 \\ 4 \\ 4 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \end{array}$	$\begin{aligned} & +.3 y \\ & +.82 \\ & +.72 \\ & +.72 \\ & +.38 \\ & +.05 \\ & +.80 \\ & +.82 \\ & +.30 \end{aligned}$		$\begin{aligned} & -.81 \\ & -.10 \\ & -.12 \\ & -.68 \\ & -.41 \\ & -.08 \\ & -.08 \\ & -.27 \\ & -.51 \end{aligned}$		$\begin{aligned} & +.40 \\ & +.85 \\ & +.85 \\ & +.18 \\ & +.43 \\ & +.85 \\ & +.26 \\ & +0.29 \end{aligned}$	$\begin{aligned} & -.77 \\ & -.05 \\ & -.75 \\ & -.53 \\ & -.55 \\ & -.52 \\ & -.86 \\ & -.43 \\ & -.85 \end{aligned}$
Mean	+. 61	+. 36	-. 0.0	+. 50	+. 33	-. 60
A12	+.73	4.31	-. 53	+. 55	$\therefore .91$	-. 70

It is evidont that theso are highor than the means of the nine correlations on component testis except for Attermts With trrors, in wich case the 1001 gives the lower value. In certion cames, therofore, pooline or Ionctrening the tests has tho offect of increasing the correlation between the indexes. The excoption in shis instance is morthey of note as a praming aroinst annlyins general rules for the correlation on longthonod tests. Tho hish dogree of consistoncy in the coefficionts indicates tiat pooling of such components is a fustifiable procedure inas noch as the test material is fairly homogoneons for murnoses of indexing.

Infercorrelations between Rights on the nine componont parts of the otiss seale are given in Tables 24 and 25 for Grade 7 and I High A respectively. Both groups consiso tod of 50 pirilis. All coofficionts lareor then three timos
.

their nrobable errors aro printed in heavy type.
 COTONEMS TOR GPADE 7

Test	2	$?$	4.	5	6	?	3	3	10
$\begin{array}{r} 1 \\ 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$		$\left\lvert\, \begin{aligned} & +.34 \\ & +.87 \\ & +.59 \\ & +.33 \\ & +.49 \\ & +.06 \\ & +.27 \\ & +0.37 \end{aligned}\right.$	$\begin{aligned} & +.10 \\ & +.08 \\ & +.35 \\ & +.03 \\ & +.37 \\ & +.16 \\ & +.38 \\ & +.19 \end{aligned}$	$\begin{aligned} & +.47 \\ & +.59 \\ & +.35 \\ & +.51 \\ & +.35 \\ & +.35 \\ & +.14 \\ & +.16 \end{aligned}$	$\begin{gathered} +.5 c \\ +.32 \\ +.43 \\ t .51 \\ +.50 \\ t .0 .36 \\ t .36 \\ t .25 \end{gathered}$	$\begin{aligned} & +.31 \\ & +.13 \\ & +.07 \\ & +.05 \\ & +.56 \\ & +.13 \\ & +.53 \\ & +.35 \end{aligned}$	$\left.\begin{array}{\|} +.33 \\ +.26 \\ +.40 \\ +.35 \\ +.39 \\ +.13 \\ +.12 \\ +\quad .29 \end{array} \right\rvert\,$	$\left.\begin{array}{\|} +.50 \\ +.27 \\ +.38 \\ +.14 \\ +.36 \\ +.52 \\ +.19 \\ +.38 \end{array} \right\rvert\,$	$\begin{aligned} & +.24 \\ & +.27 \\ & +.19 \\ & +.18 \\ & +.15 \\ & +=35 \\ & +.39 \\ & +.38 \end{aligned}$
Mears	+. 1	+.38	+. 34	4.35	+.48	+. 37	+0.39	+. 34	+.26

A simle calculation will show that thie includes all coefficients numerically groator than .27. In Pable 24 only 8 of the 36 correlations axe not significant, wile in Table 25 the samo number occur. Nost of these low coeffim cients are form in the correlations with tost $\mathbf{2 0}$. the mean valite for which is lower than for any other tost. This one comonent then appears to bo out of harmony with the rest: i.e. to fail to moasure the seme thing as tho otho er testis of the battery. Inspoction of the Otis Scale shoms that tost 20 is for memoxy, a trait quite different from those involved in the other compononts. Excopt for this one tost a fair dogree of consistoncy is found for the coofficients in both tables. Tho moansfor all 96 coefficients in each table are t. 35 and t. 36 rasnectively.

TABLS 25. - CORRTLATIONS BTSWHER RIGHTS OF THE NLHE OTIS COTPONEMS TOR I HISI A

Tost	1.	2	\leq	5	6	7	8	∂	10
$\begin{array}{r} 1 \\ 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 0 \\ 20 \end{array}$		$\begin{aligned} & +.36 \\ & +.41 \\ & +.36 \\ & +.49 \\ & +.35 \\ & +.56 \\ & +.47 \\ & +.036 \end{aligned}$		$\begin{aligned} & +.45 \\ & +.36 \\ & +\quad .23 \\ & +.58 \\ & +.36 \\ & +.21 \\ & +.17 \end{aligned}$	$\left\|\begin{array}{l} 2 \cdot 52 \\ +.42 \\ +.02 \\ +.5 ? \\ +.40 \\ +.59 \\ +.43 \\ +.0 .27 \end{array}\right\|$		$\begin{aligned} & +.50 \\ & +.50 \\ & +.24 \\ & +.0 .54 \\ & +.50 \\ & +.44 \\ & +.32 \\ & +0.20 \end{aligned}$	$\left\|\begin{array}{l} +\cdot \angle 2 \\ +.47 \\ +.38 \\ +\quad 17 \\ +.45 \\ +.36 \\ +.38 \\ +\quad .33 \end{array}\right\|$	$\begin{aligned} & +.34 \\ & +.21 \\ & +=33 \\ & +.33 \\ & +.17 \\ & +.02 \\ & 1.19 \\ & +.13 \end{aligned}$
Lean	か. 41	+. 40	+.33	+. 37	+. 4.3	4. 35	$t \cdot 42$	t. 35	4. 21

Tables is and 17 shon the correlations botmoon orrors for the commont tostis. Only 14 of tho 36 coefeicionts in Tablo 26 aro simnificant, tho moon for tho whole table Beine t.24. Tost 10 shows next to the lowest avorare correlation with tho othor tosts. so that it is of littlo significoneo indozer by tho dirghts or trongs. In Tablo 27 the coofficionts aro somomat himor, the neen of the whole toblo boinc t.32. Bight of tion 36 correlations are simificant. with five of the lowest values apooring mith Tost 1\%. It is difficult to oxplain the difference in correlation for the two grouns when indexed by F. Tim bles his and 25 showod moon walues noarly idontical, but tho dipferonce botroon the noan coefincionts for W is too large to bo ascribed to chanco. Ono arplenation of this differonco may be found in tho poct that Gromy I High A made more orroxs than crade of (See Tablo). The offect of this was to givo loss jarming in tho contingenoy tables mith a resultant highor correlation.

TABLT 26. - CORRTLATIONS BMTUEN HPRORS ON THE NTNE OTIS COIPONTNTS FOF GRADE 7

Test	1	2	4	5	6	7	8	8	10
$\begin{array}{r} 1 \\ 2 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & +.16 \\ & +.17 \\ & +.89 \\ & +.18 \\ & +.29 \\ & t .30 \\ & \cdots .02 \\ & +.25 \end{aligned}$	$\begin{aligned} & +.16 \\ & +.24 \\ & +.15 \\ & +.18 \\ & +.35 \\ & +.16 \\ & +.17 \\ & +.13 \end{aligned}$	$\begin{aligned} & +.17 \\ & +.21 \\ & +.32 \\ & +.30 \\ & +.04 \\ & +.37 \\ & +.33 \\ & +.23 \end{aligned}$	$\begin{aligned} & +.42 \\ & +.15 \\ & +.32 \\ & +.18 \\ & +.15 \\ & +.35 \\ & +.09 \\ & +.19 \end{aligned}$	$\begin{aligned} & +.11 \\ & +.18 \\ & +.38 \\ & +.28 \\ & +.40 \\ & +.24 \\ & +.18 \end{aligned}$	$\begin{aligned} & +.22 \\ & +.35 \\ & +.41 \\ & +.45 \\ & +.40 \\ & t .43 \\ & +.21 \\ & +.23 \end{aligned}$	$\begin{aligned} & +.30 \\ & +.16 \\ & +.37 \\ & +.35 \\ & +.24 \\ & t .43 \\ & +.31 \\ & +.14 \end{aligned}$	$\begin{aligned} & -.01 \\ & +.17 \\ & +.03 \\ & +.09 \\ & +.18 \\ & +.21 \\ & +.21 \\ & +.12 \end{aligned}$	$\begin{aligned} & +.15 \\ & +.13 \\ & +.23 \\ & +.19 \\ & t .22 \\ & t .23 \\ & t .14 \\ & +.12 \end{aligned}$
Mean	t. 31	+. 18	+ 3 3	+.28	$\div 23$	+. 35	4. 27	+.16	+. 18

TABLE S7. - CORRTLATIONS BWYHETS RPPORS OT TAE NINE ORIS COMPOITMS FOR I HIGI A

Test	1	2	4	5	6	7	8	$?$	10
$\begin{array}{r} \frac{1}{2} \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & +.44 \\ & +.0 \\ & t .30 \\ & +.30 \\ & +.50 \\ & +.43 \\ & +1.46 \\ & +.32 \end{aligned}$	$\begin{aligned} & +.46 \\ & +.44 \\ & +.36 \\ & +.04 \\ & +.57 \\ & t .36 \\ & t .51 \\ & t .18 \end{aligned}$	$\begin{aligned} & +.12 \\ & +.04 \\ & +.3 n \\ & t .37 \\ & t .51 \\ & t .51 \\ & t .37 \\ & +.22 \end{aligned}$	$\begin{aligned} & +.38 \\ & +.36 \\ & +.3 n \\ & +.48 \\ & +.59 \\ & +.46 \\ & +.12 \\ & +.29 \end{aligned}$	$\begin{aligned} & +.36 \\ & +.51 \\ & +.37 \\ & +.28 \\ & +. .43 \\ & +.49 \\ & +.06 \\ & +.16 \end{aligned}$	$\begin{gathered} +.5 B \\ t .57 \\ +.54 \\ 4.53 \\ t .43 \\ +.34 \\ +.56 \\ +.31 \end{gathered}$	$\begin{aligned} & +.42 \\ & t .36 \\ & +.51 \\ & +.46 \\ & +.49 \\ & +.04 \\ & +.31 \\ & +.21 \end{aligned}$	$\begin{aligned} & +.46 \\ & +.51 \\ & +.39 \\ & +.12 \\ & +.26 \\ & +.50 \\ & +.021 \\ & +.10 \end{aligned}$	$\begin{aligned} & +.39 \\ & +.18 \\ & +.22 \\ & +.29 \\ & +.16 \\ & +.31 \\ & +.24 \\ & +.10 \end{aligned}$
Mean	4.43	+. 4 ?	+. 45	$\div .35$	+. 40	+. 51	4-. 213	+.32	+. 24

Comserison of the four tables above shows that the intercorrelation of errors on the 9 component tests is about as hich as for Rimis. It may be noted also that nono of the correlations are as high as . 6 while the means in all the tables are less than . A. Such cocfficients are not considered high. The correlations corresponding for whole scales 2 s given in Table 6 are t. 74 for Rights and +.63 for Prors. Clearly then the cumatang of tests to
form that has been called. ascale score has the offoct of raising the correlation or, in other words, lengthening a test increases its reliability for these indexes. A more dotailod discussion of this noint will amoar later.

Correlations botweon attompts on the nine components have been worked out for one groun and aro given in Table 28. Of the 36 coefficients, 2 ? are significant, the lowm ost average again ocurring for Tost 10 with each of the others. By three modes of indexine, then, this test shows up as distinct in typo from the rest. Tho mean correlation for the whole table is t. 32 which may be compared with the mear coefficient of .56 in Table 6. Iengthening the test also increases correlation when Attemts aro employed as the indox variable. The comparison is only a rough one, however, for sonewhat different scales and rrouns are employec in the two cases.

TABIE 98. - CORPETATIONS BPTYEEN ATYTHPTS ONT THE NINE OTIS COMPONTITS BOR I HIGII A

Test	1	2	4	5	6	7	8	9	10
1		+. 36	+. 41	+. 48	+. 28	*. 35	+. 40	+. 21	+. 31
4	+.30		+. 5 ?	+. 13	+. 38	to. 41	t. 39	+. 21	+. 26
5	+. 41	+.32 +.13	t. 42	+. 41	+.29 +.31	+.29	$+32$	+. 35	+. 20
6	+. 28	+. 38	+. 29	+.31	+.01	+1.52	+. 27	+. 81	+. 18
8	+. 55	+. 41	$+.22$	+ 20	+. 52		+. 37	$4 \cdot 22$	+.33 +.38
8	+. 40	+. 39	+. 32	+. 34	+. 27	+. 37		t. 40	+. 25
1 \%	+ +31	+.28	+.35	+.37	+. 4.26	4.29 +.33	+. 40 +.25	+.08	+. 08
IICon	+. 34	+.31	+.32	+. 31	+. 34	+.35	+0.34	+. 29	. 24

 tion of - 42 for wholo scalos. The corsogroncing cooin ficientio for the Otis comononts are givon in Table 29 with a mean of - . 21. The incroose in cosrolation by noolins is amain ovidont. The corrolotions in tho urincinal diagonal are botroon Rimhes and Erroris on the semo teet and oro thorefore larcez than the rest, tho moen beine - 48. Tho remaindor of the table cives comelations for all mosstible cominations of Richte and Wronss on the nine tests tuo at a time. All but throe of the el coereicients are nomtive mile juzt one thim of thon aro sigaficant acocrince to the usual rulo.

This ourcosts the tho critown of theoo tinos the orobe ablo exror is too stringent for tosts of this kind. If twice tho robablo orror wore adontad in tho present asse © 11 coofficionta over. 10 moule be simnificent including
wive
Nin 20 $1+2+\quad .2$ $\frac{1}{2}+1+20-10$ 2 1.

 | | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| \vdots | |
| \vdots | | $-\infty-1+0$

1
five ninths of the total number, while all of those greater than one probable error or over. 10 will include 56 out of 81 . For the last case 25 coefficients are less than one probable error, yet 22 of then are negative in sign. Thus a coefficient less than one probable error appears to give assurance of negative correlation beyond the expectation from the usual rule of even chance; i.e. the probability of significance from the data appears to be greater than by theory. In any case, highly consistent negative correlation is exhibited by the whole array.

Section 15 Correlations of the Otis Components with Age

The correlations of the age factor with each of the Otis components are similar to those for whole scales.Table 30 shows higher correlations for the nine tests pooled than for the mean of the tests. Here again the effect of adding tests is to increase correlation. The formula for estimating the correlation of the pool of " n " tests with a criterion may be written in the form:

$$
\left.\Omega_{\left(x_{1}+x_{2}+\cdots x_{n}\right) c}=\frac{\Omega_{x_{1} c}+\Omega_{x_{2} c}+\cdots \Omega_{x_{n} c}}{\sqrt{n+2\left(\Omega_{x_{1} x_{2}}+\Omega_{\left.x_{1} x_{3}+-t_{0}(n) \frac{n-1}{2}\right) \text { terms }}\right.} \text { (Therem4 }} \text { (Appendix }\right)
$$

Considering $x_{1} x_{2}, \ldots x_{10}$ as Rights for Otis Grade 7 and age as a criterion, the constants in Tables 24 and 30 give for this coefficient, $\Omega_{\left(R_{1}+R_{2}+-R_{10}\right) \text { oge }}=-.39$
a value identical with that obtained by pooling the nine components.

TABLR 30 - CORRTILATIONS BMTVETH AME AND TUD INDEX VART -

Tent	Grado 7			I Micha		
	Agor A	$A g x^{\text {a }}$	Acgax	Amora	Agexat	Argoxir
$\begin{array}{r} 1 \\ 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 3 \\ 4 \end{array}$				$\begin{aligned} & -.00 \\ & -.10 \\ & -.10 \\ & -.31 \\ & -.12 \\ & -=10 \\ & -0.13 \\ & -. \end{aligned}$	$\begin{aligned} & -.23 \\ & =.31 \\ & -.29 \\ & -.47 \\ & -.59 \\ & -.26 \\ & -.41 \\ & =.14 \\ & +.17 \end{aligned}$	
11003	-. 05	-. 36	4.05	-. 23	-. 3 ?	+0. 2 ?
A11.	-. 33	-. 30	+. 97	--	-.32	+.34

Sintux coefficionts aro givon in Tcble ut. Tho difforencos botroon meckictec and ecturl wiues are in no caso simificent. Tho above formua, then, appears to be \& iseful one in prouiating tho reliotey (comelation whe e oritorion) of toste by pooline ommonents. It is to bo notod niso that tho formala mis hevo high valuos for lexgo valuon of $\Omega_{x c}$ and small Taiues of 几xx.
 ATI TMDX TARTABLE

Croun	Vexiables	Prodictoca Velue	$\begin{aligned} & \text { Actual } \\ & \text { Value } \end{aligned}$
	Rimber Aço Ri-3ts Aro Wrones Ace Wrongs Age Attomto Age	$\begin{aligned} & -32 \\ & =. \quad . \\ & +. \\ & -.3 \\ & -.35 \end{aligned}$	$\begin{aligned} & -.33 \\ & -.52 \\ & +.07 \\ & +.34 \\ & -.32 \end{aligned}$

To obtain a scalo of himit Taliditys thovefore, component tosts should bo solected which hare high comrolebion with the criturion but $20 n$ corrolation anonv, thomselves. Thormdire ${ }^{2}$ justiriod the use or tests mith lom intorm correlom tions an the erround that they oro ropetitive: ioc. measm ures of tho seno foct. Tho abovo formula howevor, will sive hice? validity becusso tho inturatost corrolations ocm oun in tho conominator, and 20π veluos inll thus raimo tho vatuo of tho Sraction. Thn basis of tont soloction, Whon, annoarg to bo mathomaticai, rathon than pryohological. Form twatcing howover, tho who basce erpec.

In the precoding soction it wern chom that pooling componon' tostrs has the offoot of incrcessince the relicity Of the total scolo: i.0. to tho axterit to nhich ite correm lates ith a cyitorion. Tho pooling of toats will noxt bo whom to hevo a similax offoct unom the roliability of a SCEIO; i.e. tho correlation betwoon tro forms of tho semo tost.

It Till be zecallec: thet two form of tho Terman Sco.lo moro giton to Croun IHigh C on succoscito deys. Reliability coofficionts have been coloulated for each of the If comonant tomts and for all combinas to rivo the total score. The rosults are given in Thble ga.
alemoixe of the Wetional Acorlony of Sciences. Vol. XV. p. 316
 BY COTPONETS AD TOTAL SCORE

Tost	Pommia	Corroletion botroen Form A and B	Ranls
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 0 \\ 10 \end{array}$			$\begin{array}{r} 7 \\ 3 \\ 6 \\ 1 \\ 2 \\ 10 \\ 5 \\ 8 \\ 9 \\ 4 \end{array}$
18003		+.678	
A11		+.316	

Cortain of the individual tests reveai a high dogroe of reliability, ospocielly test 4 (Iocicel selection) nith a coefficiont of . DNO. It will also bo observed that some of tho lomest corroletions occur sith tests scorod R-W. This point mill bo dealt vith moro fully in a following sbction. The noan of the reliabilisy coofficionts on the tents is 4.079 , While tho corrolation for total Score on the tro forms $\$ 3+.21 C_{3}$ so that pooline tho tosts has the offect of incrocsing roliablitu.

A roctiocivo fommia givon by Brovin, and also immlied b in Speasman's Gonorel. Thoorom may bo givon in the form,

$$
\Omega_{N N}=\frac{N \Omega_{11}}{1+(N-1) \Omega_{11}} \quad \text { (Theorem 5, Appendix) }
$$

There Ω_{11} is tize comrelction botroon tro touts or the avorm

[^1]| | \vdots |
| :--- | :--- |
| \vdots | |
| \vdots | |

age of several, and iv the number of tests thus emalgameted. In the presont exomile the arerage correlation from the first three teste is. 7a, In order to prodict the rem liability coefficient for 10 such toats, it is only nocesm sary to substituto these values in the above formmla givo ing,

$$
R_{(0),(10)}=+.96
$$

The value from actual amelgamation is . 2%. Similarly, a celculation besed unon the average of all in tests also gives

$$
\lambda_{(10)(10)}=+.96
$$

The use of the formula in these casos, then, gives considorable over riediction.

In ordor to test the applicability of Brown's Form mula more fully and to analyze more fully the effect of pooling testis on reliability, a nore detailed procedure is noxt smployed. Roliability coofficients on cumlated. tests are obtained in two ways: The scores for teats 1 and 2 on each form of the goman Scale are added, and the correlation determinod; next tests 1,2, and a are poolod and the tro forms correlated, and so on matil all 10 tests have been cumalatod in this fashion. The second procodure is to begin with tests 10 and 9 and omalganate in the reverse diroction. These emorical rosults are then commared witin theorotical values obtained by substituting $r=.68$ and 15 from 1 to 10 in Brom's Fommla. Table 33 gives the rosults of this lengthy caloulotion.

$$
1
$$

IVaber of Tosts Cumalatod	$\begin{aligned} & \text { Theorotion } \\ & \text { Value } \end{aligned}$	Ordor of Cumplation	
		2. 6010	10602
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 7 \\ & 8 \\ & 1 \end{aligned}$			$\begin{aligned} & +.70 \\ & +.19 \\ & \text { t. } 83 \\ & \text { t. } .86 \\ & \text { t. } 86 \\ & \text { t. } 87 \\ & \text { t. } .87 \\ & \text { t. } .07 \end{aligned}$

Inswoction of the teblo shows e couns ermeoment in the thao sorios. Finure is rich is besct on the table brings out the comarinons more clearly. The tinoo curvos sho7 a renid initial riso un to a cumanated togts and thon a moro froiual incroege to tho maxinun vine. The moro rem
 the rovorso one. is no doubt due to the mroctor relicbilIty of the fixgt for tests as incticatod in Table 32.

Whilo the gonorel ampononts in the tiveo curves in ovident, novartholoss thoro is a vory cloon tondmey for tho tioorotical curve colculatoul for $r=$.63 to givo an over tratiotion beyond 4 or 5 cumazatod $\overline{3}$ ostes. This may
 rolicbility coefficiontis given in Table 5\%. but whatever the cunse. who une of Brom's Pommala for nreatiction in a. cane of this kind is opon to duostion. The equation
$-$

41
ro followr - 157

Fg 5. Theoreticat und Actual Rebabilit, Treuds based on Tin Terman Component,
and correspondine theorotical curvo indicate that to get any desirod degree of reliability with th. On as an upper limit, it is only necossary to amalgmate tests indofinitely. This is, of course, absurd. The fommla gites an over prodiction fairly early in the serios of cumalated tests. Pron the above tables it appears that four or Pive typical tests of the battery mill mive almost as reliablo an index as the pool of aIl ton components. This rosult mould account in part for the hic? reliability of such testis as tha Chicago Seale consistinc of only five compononts.

This problem is one of great importance in test construction. If intolligence can bo indexed with almost as great accuracy by a short scalo as by one twice as long: the savinc in time alone is enomous. Noreover if the short sorigs can be shom to be as valid as the longer one by correlation with oxiteria, the abreviated method is furthor justified. Inammoh as no suritable criterion other than age was availabio for the mesent data, the check cannot bo rimidy amoliod. The age correlations by half and by wholo scales, however, agree almost oxectly $(-.37,-.39)$, so that with age as a critcrion, the ilve test battory is as valuable as the ten tost scale.
(ansen

Section 17 Summary of Anviysis of Commonents

The rolutionships found betwoen indox variables in Part I aro verified for componont tests. Those coefficients are in general lower than by whole tests, so that pooling has the effect of increasing the correlation between indexes. Inter-correlations betwe日n components for R, ${ }^{\text {F }}$, and A reveal a high degree of consistency for such short tosts but are less stable than for similar coefficients by whole tests. Furthermore the consistent bettorios of correlations oven for R and y^{2} on different tosts indicate a high degree of homo geneity in the tost material witio the possible exception of Test 10.

In addition to raising the correlation betweon index variables, pooling tests also has the general effect of in creasing the ralidity and reliability of a scale within cere tain limits. Predictive fommlae are useful in this connection but are likely to give an overastimato of the correlation to be expected by pooling. Moreover the physical endurence of the childron dotormines the moximum length of the tests at a sitting, so that the formulae are limitod in application. The gain in validity and reliability is repid on pooling the first few bosts, but the point is soon reachen where the addition of similar material affects the correlations but slight1y. The rosulta indicato that a battory of four or five carefully selocted components will give an indow with substantialo Iy the same reliability as a scale twice that length.

Part III Scorinc Formalao

Section 18 The Linear Fom, $S=2(R+b i)$ a. Formulae with Highest Talioity

In Parts I and II it has beon shown that the scoring formulae omployod by the authors of tho scales heve little offect upon the resultant scores when a number of components are pooled. The Teman Scale with tho components scorod by the three formlae, $S=R, S=2 R$, and $S=R-I I$ has a correlation of te.26 with the score obtained by using $S-\mathbb{K}$ on 2 II ton components (Tables 4 and 5). The amalgameted score then, is not very sensitive to such changes in the comronent scoring formlae and simple forms are recomendod on these grounds. The single component, however, is much more violentIy affoctod by chanres in tho fommiao onnoloyed to indox it. Changes in weights which affect the pooled score but slightly, will be found to heve a pronounced oflect upon the individual. components.

Te,ble 4 Which gives the various comonont scoring for malae used by the authors of the scoles. includes only formulas of the linoar typo; i.e. equations of the first degree in the variables employed. These variables are R and W. so that the most general formala used may be written, (1) $S=a(R+b W)=a R+c W$ where a, b, and c, are constants. It was also noted in Section 3 that the relatiomshir, $A=R+W$

makes it possible to express this roma in terms of R and A os Wi cha A. Formula (1.), homevor, has been so genorally employed that it mill bo sdonted here for further analysis. Formulae expressed in toms of the other varieblos may be obtained by substitution if they are required.

The question mediately arises as to the best valLes to assign the constants a and o in oquationi. A genoral solution of this problem may bo obtained by the motileod of least squares. Values for R and i. are obtained for each of the N individuals of a given population. Assuming that a criterion, \mathbb{R}, is the best measure of such doterminations a set of $\$$ equations mas be formed,

$$
K_{1}=a_{1} R_{1}+c_{1} W_{1}
$$

$$
K_{2}=a_{2} R_{2}+c_{2} W_{2}
$$

$$
K_{N}=a_{N} R_{N}+c_{N} W_{N}
$$

Where the $K^{\prime} s, R^{\prime}$ s, and M's exc mom, and a's and $c^{\prime} s$ are to be determined so as to minimize the inconsistency in the equations which is assumed to be cue to imperfect measurement.

Next $V_{1}, V_{2}, \ldots V_{N}$ will be written for the differ ences between $K_{1}, K_{2} \ldots K_{N}$ and the values obtained from the best determinations for the a^{\prime} s end $c^{\prime} \mathrm{E}^{\prime}$

$$
\begin{aligned}
& a_{1} R_{1}+c_{1} W_{1}-K_{1}=V_{1} \\
& a_{2} R_{2}+c_{2} W_{2}-K_{2}=V_{2} \\
& a_{N} R_{N}+c_{N} W_{N}-K_{N}=V_{N}
\end{aligned}
$$

These differences or "residuals" are assumed to be

normally distributed. While the assumption is open to question for data of this type, it is nevertheless the best that can bo made. The most mrobablo values for a and c next require that the sum

$$
V_{1}^{2}+V_{2}^{2}+\cdots V_{N}^{2}=a \text { minimum }
$$

Tors reminder of the procedure consists in setting up the "normal equations" in the usual may. Transforming the variables to their respective means, and setting up these oquations gives,

$$
\begin{aligned}
& a \sum r^{2}+c \sum r w=\sum k r \\
& a \sum r w+c \sum w^{2}=\sum k w
\end{aligned}
$$

Since, $\sigma_{x}^{2}=\frac{\sum x^{2}}{N}$, and $\Omega_{x y}=\frac{\sum x y}{N \sigma_{x} \sigma_{y}}$, these equations may be mitten in tho form.

$$
\begin{aligned}
& \mu \sigma_{n}+c \Omega_{n w} \sigma_{w}=\Omega_{k r} \sigma_{k} \\
& a \Omega_{n w} \sigma_{n}+c \sigma_{w}=\Omega_{k w} \sigma_{k}
\end{aligned}
$$

Solving these equations for a and c gives,

$$
\begin{equation*}
a=\frac{\sigma_{k}\left(\Omega_{k w} \Omega_{n w}-\Omega_{k n}\right)}{\left(\Omega_{n w-1}^{2}\right)} \tag{3}
\end{equation*}
$$

(4)

$$
c=\frac{\sigma_{k}\left(\Omega_{k \Omega} \Omega_{n w}-\Omega_{k w}\right)}{\sigma_{w}\left(\Omega_{\wedge w}^{2}-1\right)}
$$

The value $\frac{c}{a}$ my then be written

$$
\begin{equation*}
C=\frac{c}{a}=\frac{\sigma a\left(\Omega_{k \Omega} \Omega_{n w}-\Omega_{k w}\right)}{\sigma_{w}\left(\Omega_{k w} \Omega_{n w}-\Omega_{k \Omega}\right)} \tag{5}
\end{equation*}
$$

This last result has bean obtained by Thurstone as a 2. I. I. Thurstone, A Scoring Method for Mental Tests Psy. Bull., Vol. XVI, IJo.7, July, 1219.
$+$

\square
$2-2-2+2+2=-2$
 $+2$

- －－ \qquad
レ—＂

$$
\therefore=i
$$

\qquad

value for C in the formen $S=R+E$. when that the coreonem tion $\Omega_{k s}$ is comaram; i.e. Cor $\frac{c}{2}$ is dotormined in such of wy as to nossoss the himont prididty with a oriterion. Tho fomma for this corralstion ing

$$
\begin{equation*}
\eta_{k s}=\frac{\Omega_{k n} \sigma_{n}+C \Omega_{k w} \sigma_{w}}{\sqrt{\sigma_{n}^{2}+2 C \Omega_{n w} \sigma_{n} \sigma_{w}+C^{2} \sigma_{w}}} \tag{6}
\end{equation*}
$$

a.

Thmestone also makes use of Yulo's omation for mul. tinle comre? tion to obtain am emmossiu? for the hignoat correlntion with the linear formale $\mathrm{S}=\mathrm{n}=\mathrm{A}$ (W, This rerult x be ritten

$$
\begin{equation*}
R_{k(a r+c w)}=\sqrt{\frac{\Omega_{k \Omega}^{2}+\Omega_{k w}^{2}-2 \Omega_{k w} \Omega_{k} \Omega_{n w}}{1-\Omega_{n w}^{2}}} \tag{7}
\end{equation*}
$$

The sotial nrocoduro involpod in clotorining the constents a and c will thon be os follo: 5:
2. Cive tho tost to a mpoun and obtain slso the ariterion of velidity gaminst bich the fox mala is to be chocked. S. Soore the toot for R ene Weme on ? at : the constantm $\Omega_{k \Omega}, \Omega_{k w}, \Omega_{n w}, \sigma_{n}$, and σ_{w} (σ_{k} is nut rocuired if Formio. (5) is om?oyod).
3. Sulusfítuto tioso lost romits in oquations (3), (4), and (?) and obtain the formbe $S=a R+c W$ or $S=R+\frac{c}{a} W$ (diffirian only by factar of mer oxtioncitay, $\frac{1}{a}$). \therefore To mraitat the himest corrcletion obtinable with
 tion (i).
a. Gou. Wulo, Introduction to Stntistics, C. Crifing, London 1219, 248.
(n)
b. Limitations in the Use of tho Formile $S=a R+c W$

In section 3. two plens for administering tests mere deccribed. Accordin to the first, the time is fixed and Attormts, Richts, and Frones allorrod to vary; accordingto the second, the nanoer of Attemts is fixed, while Time, Firghs, and rones are recorded. Tro of the index variables are thus alternately controlled by the method of administering the test.

Tho formile $S=a R+c W$, with constants dotermined by hichest velidity with the crituorion, serves very well for tests given according to the nlan of fixing the time. All of the tosts emloyed in the three intelligence scales are of this type and hence no difficulty is encountered.

For testis administered by fixing the Attempts, howover, the above formala is indequate. This arises from the fact that S is no longer a function of two independent rasiables, but of only one. If Attemyts are constant and $A=R+W$, then $W=-R+2$ whered is constant. Substituting the velue for W in the empession $S=a R+c W$ gives $S=a R+c(d-R)$ or $S=(a-c) R+c d$. Thuas the scorine formia is independent of , and no matter what velue is assicned to C imith the exception of $\mathrm{c}=a$, for which value the correlation is zero) the correlation $八_{\mathrm{K}}$ given by formia (6) is equalto $h_{\mathrm{kr}}^{\mathrm{g} \text {. This last result fole }}$ lows fron the fact that $\Omega_{x\left(a_{y}+b\right)}=\Omega_{x y}$ There a and \underline{b} are constints (Thoorem 1, Appondix)

In other words if Attempts are constant, the scoring formula $S=a R$ has the same validity with a criterion 2 any linear function of R and W (with the exception $R+W$ for which $\cap k s=0$).

A furthor limitation in the use of the formula $S=R+C W$ lies in its sensitiveness. The velue of C as determined by formula (5) denends unon σ_{n} and σ_{w} which in turn depend won the proportion of Bighte and Wrongs in the groun. Thus while the value for C is the best nrediction for the naxticular group, the value will very likely diffor very materially in other mouns with differing percent aces of Wrongs. This meens that the formla, may be used with safety only (for tests administered with time fixed) when the vaiue for C hes beon detemineo. after the tost has been given to the particular groux, not bofore. Thura stone discusses the sensitiveness of the fommla, but is unvilline to admit its limitations. Teble 34 which is based on oxtrenely longthy and careful calculation, indicates wide veriation in the deteminations of for the 2 Otis comments on Grade ' 7 and I High A. The average differonce in the values of C for the two crours $i s .549$ and in only one test is the difference less than 1. These results point cloaxly to the conclusion that the above formala has littlo general merit: i.e. the value for from one group cannot be salely assuned to hold for another.

Is I. Thuratone, 100 cit.
?

TABIP 34. VALUES FOR C IT THE PORTULA S R +CV DETERITIEW
 THE OST SCATM (LME CRTM IUS)

	Crosto 7								
	$A \times R$	$\mathrm{R} \times \mathrm{W}$	UGex W	6R	bow	ι_{1}	Oge \times R	$R * W$	Oge W
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 4 \\ & 5 \\ & 0 \\ & 7 \\ & 6 \\ & 8 \\ & 10 \end{aligned}$					3.566 2.79 2.258 2.066 2.058			$\begin{array}{\|c\|} -.767 \\ -047 \\ -.752 \\ -.677 \\ -0.559 \\ -0.518 \\ -.857 \\ -.59 \\ -0.054 \end{array}$	$\begin{aligned} & +.017 \\ & +.282 \\ & +.212 \\ & +.230 \\ & +. .325 \\ & +.189 \\ & +.377 \\ & +.244 \\ & -.040 \end{aligned}$

PADLE 3 = COMTMYHE

Tenti	I 140			Dits.
	O_{R}	Ow	C_{2}	$c_{1}-c_{2}$
$\begin{aligned} & 2 \\ & 2 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 8 \\ & 9 \end{aligned}$				

c. Tho Use of the Fommie $S=R+C W$

In tost matoris? whore two altormativor are givon for each iton and guessin thorerore possible the fommale $S=R-W(1, r, C=-r)$ kas beon frecuently adoptod. Simil. ax fommico are usos when tho munor of choices is greater. These oxprosetons axe caswmok to cormect for groseing oloment involvol. Aoconting to tho Eboro omustion a person gressing blinily on all of the itons will get holf of them right by chune, and honce is zero scaro ibith he ceserves.
anden

For actual guessine, then, the form-
mula ponelizes justiv: but it also petnalizes for orrors which are not due to gressing, and hence unjustily. As e. result, for very difficult matorial, noorly all of the scores may bo nerative.

A number of oxperimental attompts have boen made to detemine the amount of mossing in toster of this sort. After administering a set of Irue-Felso tosts of the syllogystic reasoning type, the writer askod tho pupils on which items they had gressed. Tho numbor guassod wes about two por cont of tho totol number of orrors made, and of those itens gressed only on per cent wero rrone. For such srouns and testis, tho penally attached to orrors by the
 ever, that the chiluren did not alrays mow whether or not they hod messed on any iten. Rewioning end guassing are often indistinguishable, and wh has not oredited himself with reaswione won he has on Iy mado a luelyy guess.

Instoad of assumine that a penalty bhould be attachea for prassinge Thurstone proposes to use the formula with the value of 0 to be dotermined socorcing to validity as above. This nethod appoars to be refereble to that of a priori dotormination, when tosts aro admistered with the tine fixed. If Attomts are fixed, however, the fommIa becoues indemendont of 17 as has just boon shom, and all values of C (except $C=+1$) give: the same correlation $\Omega_{k(\Omega+c w)}=n_{k \Omega}$

This point is of great practical importance because most tests of the True-False typo are administered so that all may finish; i.e. Attempts constant. According to the above results, all formulae of the type $S=R-\frac{1}{n} W$ give the same correlation with a criterion as is obtained by using Rights alone: i.o. $S=R$. Inasmuch as the expression $R-\frac{1}{n} W$ does not correct adequately for guessing, and has the same validity as $S=R$ for Attempts constant, the writer believes it should be abandoned in favor of the simpler form.

The following example illustrates the foregoing discussion.

$$
\begin{aligned}
& \begin{array}{cccccccc}
K & R & W & R-W & K & n & w & 1-w \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{-6} & \frac{-30}{-2} & \frac{2}{-1} & \frac{2}{20} & 2 & 0 \\
-6 & -10 & -2 & 2 & -\frac{1}{2} \\
30 & 5 & 5 & 0 & 0 & 1 & -1 & 0 \\
40 & 4 & 6 & -2 & 20 & 0 & 0 & 0 \\
50 & 7 & 3 & \frac{4}{30} & -10 & - & 3 & -3 \\
\hline 150 & 4 & 6 & -2 & & & & -
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{m}=\frac{120}{\sqrt{18000}}=\frac{2}{\sqrt{5}} \\
& \Lambda_{k(n-w)}=\frac{240}{\sqrt{72000}}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

\square
-
4.m - \qquad
(all
(all
$\pi-2$

14
\cdots
Ien

$$
\cdots
$$

Section 12 Si rile Motuos

Tho fosmaso $S=\frac{A}{T}$ and $S=\frac{R}{A}$ may bo convoniontly ambloyed. to indox Speod ona Acouracy monooctivoly. The Inttor form has boen usod artenaivoly in tho first two ports of this study and has been found to hate valuablo propozties whioh othoz inzeros do not o3e0ss. With mimo constant as in tho intollimano mon]en diaunsed. tho form mala Sor Spoci rouscos to $S=C A$; i.c. tho Attommts Givo tho monewite of Spood dixoctiy whon mi ? is Pixod. Whon Attormts sue constont, tho Spood is given by the recinrocel of tho Timo (in suitabie unitS).

(3) $\Omega_{\frac{x}{y} \frac{z}{w}}=\frac{\Omega_{x z} V_{x} V_{z}+\Omega_{y w} V_{y} V_{w}-\Omega_{x w} V_{x} V_{w}-\Omega_{y 2} V_{y} V_{2}}{\sqrt{\left[V_{x}^{2}-2 \Omega_{x y} V_{x} V_{y}+V_{y}^{2}\right]\left[V_{2}^{2}-2 \Omega_{2 w} V_{z} V_{w}+V_{w}^{2}\right]}}$ whore the V 's aro coofficioness os masiation givon by tho Pommia $V=\frac{(00 S D}{M}$ (Thoorom? Mmonciny) Pos the tro ram tios $\frac{A}{T}$ and $\frac{R^{M}}{A}$ unis ommession boconos

$$
\Omega_{\frac{A}{T}} \frac{R}{A}=\frac{\Omega_{A R} V_{A} V_{R}+\Omega_{T A} V_{T} V_{A}-\Omega_{A A} V_{A} V_{A}-\Omega_{R T} V_{R} V_{T}}{\sqrt{\left[V_{A}^{2}-2 \Omega_{A T} V_{A} V_{T}+V_{T}^{2}\right]\left[V_{R}^{2}-2 \Omega_{R A} V_{R} V_{A}+V_{A}^{2}\right]}}
$$

For $T=$ onstant, $V_{T}=$ constent, and all cosreictions with T are zoros, thorofore.

$$
\Omega_{A} \frac{R}{A}=\frac{\sum_{A R} V_{A} V_{R}-V_{A}^{2}}{\sqrt{V_{A}^{2}\left[V_{R}^{2}-V_{R A} V_{R} V_{A}+V_{A}^{2}\right]}}
$$

which aravesstion roduces to
(9) $\Omega_{A} \frac{R}{A}=\frac{\Omega_{A R} V_{R}-V_{A}}{\sqrt{V_{R}^{2}-2 \Gamma_{R A} V_{R} V_{A}+V_{A}^{2}}}$

Equation (9) thus sives the correletion between Speed and Accuracy for tests there Time is fixed. The ITeximm value, or $\Omega_{A} \frac{R}{A}=+1.00$ is given for $\Omega_{A R}=+1$. . Thus if the puyils get every problen that thoy attome right, Speed and Accuracy will be parfectly correlatod. For zero correlations between Attompts and Richts. Speed and Accuracy are noratively correlated, the value aproximating - $\frac{\sqrt{2}}{2}$. Finally, if the ratio $\frac{V_{A}}{V_{R}}$ is equal to the value of $\Omega_{A R}$, the correlation between Spead and Accuracy will be zero. Tablos 5 and 18 indicate that these last rolctionuips will hold very closely for intellifence test data. The ratins of the V_{s}^{\prime} and the corresponding correlations are approximately. 7 Formia (3) is very usefui for obtuining the correlstion between speed and Accuracy from the aingle corrolation table for Attemtin and Rights. This table gives the values $\Lambda_{R A}, \sigma_{R}, \sigma_{A}, M_{R}$, and M_{A} which are ail that are required to obtain $\Omega_{A} \frac{R}{A}$. The correlationswith Accuracy in Part I wore computod from retios $\frac{R}{A}$ oltaingi for oach veriato by division. About a third of the coefficients were then checked by the above Iormia. Substitution in ocuation (9) rew quires but a fevements, wile the dirision for ratios aIone tales about an hour for 5 n cases. A great saving of time is, therefore, effocted by the uso of the above formula, esnecially if the constants in the formia are needed Por other purnoses.

If Athomets are firred, speed is mersured by the recipo
vocal of the Time, and Accuracy by Rights. Equation (8) then, reduces to

$$
\Omega_{\frac{A}{T} \frac{R}{A}}=-\Omega_{R T}
$$

For reasonone test material of the mene-False type, administered with Attempts constant, low nemetive correlations were obtained for Rights and Rime indicoising that the correlation between Speed and Accuracy riven by the last formola is positive and low. For 13 ground of about pr pupils each, the average correlation $\Omega_{\frac{A}{T}} \frac{R}{A}=20 \pm .05$. For both types of test administration, then, Speed and Accuracy exhabit correlation that is zero or barely lore enough to be simificant.

b. The Validity of Sirmle Ratios as Soaring Indexes

It has just been shown that the ratios giving Speed and Accuracy are relatively independent measures of intel. ligence. Tho choice of the prover index will therefor dopond upon criteria such as the purpose for which the measuroments wore mede, the validity of the indox, and its rom liability. The question of validity will be token up first.

Tho use of certain lInear ionwalao has been justified on the Davis of their validity ar correlation with a crimterion. This same principle may be amlind to ratios. If a criterion, K_{3} be substituted in Formic (c) in place of $\frac{z}{w}$ an expression for the validity of $\frac{X}{Y}$ may be written in the form
(10) $\Omega_{K} \frac{x}{Y}=\frac{\Omega_{K x} V_{X}-\Omega_{K Y} V_{Y}}{\sqrt{V_{X}^{2}-2 \Omega_{X Y} V_{X} V_{Y}+V_{Y}{ }^{2}}}$

The correlation teblos for $\lambda_{k x}$ and $\lambda_{k y}$ will fumish all of tho deta necessary for this forme and save the labor or caicnetinc $\Omega_{k \frac{x}{y}}$ by tho direct nethou of division. In emorel if $\Omega_{k \frac{x}{Y}}$ is simificantly himox then $\Omega_{k x}$ or $\Omega_{k r}$ its use in place of the simio vaximbes is justified on the momes of himer volidity.

While scoro is not tho best mesaru of vilidity for indexer wich are so clocoly roleto to it, novartheloss the duta in Toblo 5 will cirvo a Exmontiou es to the genorel mothod. The onter of tino correlations betwoon $R, \frac{R}{A}, A$, and acore is $\Omega_{S R}=.96, \Omega_{S} \frac{R}{H}=.76, \Omega_{S A}=.59$. The differences aro 2II. simificont horo so that on the basis of Falicitos $\frac{R}{A}$ is a botton incor than A, but not co grod 28 R alons.

c. The RoInability of 3im zo notios as Seoring Indexes

Efuntion (3) is erein useral in prodictine the reliability of eretio without chrect celalation on the ratios thenselves. If $\frac{X_{1}}{Y_{1}}$ and $\frac{X_{i}}{Y_{2}}$ aonote the ratios in quastion on suceessive friels of tho man tozt or bur naroilel forms. the reliability formule may bo writton in the forn

In orior to colazise this gumbity, four corrolation tables are roquired: $X_{1} X_{2}, X_{1} Y_{2}, X_{1} Y_{1}$, and $X_{2} Y_{2}$

If they aro preperad all at onoe, the nerginal froquon cies give excollent chocks on the distributions. As in the case of validity if $几 \frac{x_{1}}{Y_{1}} \frac{k_{2}}{T_{2}}$ is significantly groator than $\Omega_{x_{1} x_{2}}$ ov $\Omega_{r_{1} Y_{2}}$, it is to bo proferred as the more reliable index. This motion yas amplied to the Ternan Soelo Forms A and. B. Tho sealts of the direct cal. culation appear in Teble \%. Prouiction Dy Fomnala (id) givers: $\Omega_{R_{1} R_{2}}=+.896, \Omega_{R_{1} R_{2}}^{A_{1}}=+0.854$, and $\Omega_{A_{1} A_{2}}=+.684$ Accuraoy and Rights are significontly more relieble than Attembs, but are not essontially cifferent from one another.

The intelligence quotiont, and similar ratios, aro eso sentially a score dividod by a chronological age, when the score is expressed in are units and taken fron a suitable origin. The choive of the age unit is imoortant chiefly because the rosuitine raitio is then a pure numbor and oasily inter. pretoci. As far as the validity and reliability of the ratio are concuma, the choice of the unit for scone is of no consequenco, inasmuch as correlation is s measure indopondent of the units omployed for the two triates. The origin from which the scoro is taken is almay: of importance since any shict obviously chances the ratio. e. $\frac{X}{A} \neq \frac{X+C}{A}$. The origin for the score in the intellirenog quotiont is the same as for chronolomical age, honee no difficulty is oncountorcd.

Fornula (8) is a function of Ω_{s}^{\prime} and V_{s}^{\prime}, onily the lato
tox beinc affectod by the orirein from which the variablos aro takon. Indeod, by suitable choice of oricin all of the V 's.may bo mado equal. so that the formla roduces to
(22) $\Pi \frac{x^{\prime} z^{\prime}}{y^{\prime} w^{\prime}}=\frac{\Omega x^{\prime} z^{\prime}+\Omega x^{\prime} w^{\prime}-\Omega\left(x^{\prime} w^{\prime}-\Gamma\left(y^{\prime} z^{\prime}\right.\right.}{2 \sqrt{\left(1-\Omega x^{\prime} y^{\prime}\right)\left(1-\Omega z^{\prime} w^{\prime}\right)}}$

Lotting Y^{\prime} and ' ${ }^{\prime}$ 'donote ace, and X^{\prime} and Z^{\prime} scores on succossivo trials of a tost, an oxpression of the roliability of the retio $\frac{s}{a g e} m y$ be mitten in the fom

$$
\Gamma \frac{s_{1}}{a g y} \frac{s_{2}}{a_{g}}=\frac{1+\Lambda_{s_{1} \delta_{2}}-\Omega_{s_{1} a g e}-\Omega_{s_{2} a g e}}{2 \sqrt{\left(1-\Omega_{s_{1} a_{g e}}\right)\left(1-\Omega_{s_{2} a g e}\right)}}
$$

Furthomoro if $\Omega_{\text {siage }}=\Lambda_{s}$ age tinis omprension rom duces to

$$
\begin{equation*}
\Omega_{\frac{s_{1}}{g_{8}} \frac{s_{2}}{\operatorname{sg}_{2}}}=\frac{1+\Omega_{s_{1} s_{2}-2} r_{\text {sage }}}{2-2 \Omega_{\text {soge }}} \tag{13}
\end{equation*}
$$

Formia (13) will have the volue +2. of for $\rho_{s s}=+1,00$, and Will be zero for $1+\Gamma_{1} s_{2}=2$ lsage . Por a given nositive value of $\rho_{s_{1}} s_{2}$: the relisbility civen by the fommla mill incroaso as Ilsoge decreeses from tho value $\frac{1+\cap s_{1} s_{2}}{2}$

As an illustration, let $\Omega s_{1} s_{2}=+.8$. Tho function
 follows:
(

Pigure 6 which is basod on the table shows that the high est reliability of the ratio $\frac{s}{a g e}$ occurs with the highest nerative values of λ sage and decreases as Λ Lsoge
 is fornd by solving the equation

$$
.8=\frac{1.8-2 x}{2-2 x}
$$

giving $x=.5$, so that the ratio has a greater reliability than $\Gamma s_{1} s_{2}$ up to the velue Asage $=.5$. Inasmuch 0.3 .3 is a good reliability coefficient for score, and Isoge is seldom as high as +.5 , the suppostitious example above indicates that ratios with are have in gen oral a greater reliability than that betwoon crude scores. The nemative correlation usually found botween score and are for a given grade group (See Tables 8 end 2) also indicates that ratios of the above type are most reliable when the groun is thus solected with raspect to ago.

A final example will bo given to illustrate the effect of trensferring the origin to eliminete the - Assurning the aproximate values $V_{A}=V_{B}=20, \cap_{A B}=.9, V$ age $=8$ and (lsage=-4. © Fommla (11) will give by simple substitution

formula (13) grues

$$
\Omega \frac{A}{\text { age } \frac{B}{a g e}}=+.96
$$

An increase in reliability of .33 is thas brourgit about by the trensfer of origin. For the linear form $S=a \quad R+c W$ such a ghift will, of cowne, have no offoct unon the relizbility or validity of the formala (Soo Thooron I Appondix).

The basos for selectinn a simplo ratio ss a mode of indexing may be listed as follows:

1. Tho dosirebility of indexing another foabure of tho feneral oharaboristic, 0.G. Accuracy, though a sub-charm actorisulc of intollimonce is ossentially difforont from Speed.
2. The peneral nronertion of tho retio as commared mith othor variables oof. the intellinonce quotiont facilitates comarisons with nownl acherejents.
3. The validity of the ratio to be dotemined by Formala (10).
A. The relicbility of tho ratio as deterained by formals (11).

Section 20 Coneral Conclusions

1. The verious types of resnonse to tect material have boon troatod es inder variebles for the traits in cuestion An analysis of these variobles for intolli-ence test data

revealed fairly definite relationships between thon as indicated by the coefficient of correlation.
2. By eliminating the difficulty factor, the primary inder variables were reduced to A, R, \mathbb{T}, ani T. T, one of those boinc fixed by the metinod of tost administration.
3. An analysis of wholo scalos indiceted that all of the primary variables have valuable pronorties as indexes. The introduction of the simple ratio made possible a comparison of the indexes revealing then in order of general reliability as $S, R_{s} R_{A}, W$, and A, with Tino fixed.
4. According to the criteria emloyed, the com licated formulae used by the authors of tho tests, are not significently botter than Rights alone. Accurecy comes next as a renerally reliable inder, and has pronerties which the other variables do not possoss. For batteries of tests, then, scorins by Rights alone is justifiod by reason of greater simplicity and practically equal reliability as compared with more comiloated forminu.
5. In discriminative cerecity, Attompts proved to be hichest anch Accuracy lowest: i.e. individuals and groups differ more widely in Speod then in Accuracy. Lack of discrimination betweon groups is of less consocuonce in an indor then failure to differentiate botreen indivicum als. Acourroy, therefore, rotains its hich plece as an
index regardless of the slight inter-grouv differences shown.
6. Analysis of the scales by comonent tests fumished a check upon the results obtained for whole batteries. The coefficients in general are lower and less consistent than by wholo scales.
7. The validity and reliability of tests are increased by poolins comonents. Estimations of these correlations are fumishod by certain predictive fommlae, which in peneral, tend to give over estimation very early in the cumalated series.
8. Both theoretical prediction and actual results in dicate that pooling tests soon ceases to increase validity and reliability materially. A battery of five wellselected tests is about as satisfactory as one twice as long.
9. The rormala $S=a R+c W$ has beon shom to bo the most gonoral linear fom. Formalao for validity have been worked out by the nethod of least squares.
10. The Iinear formula above is open to obiction because of its sensitiveness for values of C. This imlies that a nem detornination is necessary for each new group dealt rith.
11. The scoring formla $R-W$ is criticizod because of its

\qquad $-1-1$

\qquad
 $+2+2+2+2+2+2$
\qquad .
failure to correct for guessinge It has boon shom that for Attomen constant (tho usizel mothod Tith Truc-Falso tiosts) corroctive formalco of the tyme $R-\frac{1}{n} W$ have oxactly tho se: re ralidity as Rifghe alone.

1n. Spocial Pommlao and mothods have boon morked out for debominine the Telidity and reli bility of simplo satios.
13. M13e valuablo pronortion nocsessed by simle ratios indicats that thoy aro hirgly doairablo mo usoful scoring; devicos in uite of tho labor of division. Speciel tables give mach quotioncs dirocty.

1s. Nowe combicated formino hore not been dealt with bom causo the lebor involvod in their use wonld bo nrohibitivo
 senzitlumens of such formee is cridutons roeson for avoiutne tiacno
15. The results as a thole voint to tho conclusion that for brtwarios, ans for sinmlo tonts as well, the most dem simolo and usorul inderes are I and $\frac{p o}{\text { A }}$
N..

$$
\cdots \infty
$$

\square $1+2$

Bibliorropity

Menoirs of the Netional Acadomy of Sciences. Tol. XV, Psycholosicel Testing in the Unitod Stetos Ammy. C.Spocrman, Correlation of Suns and Diproronces, British Joumsl of Psychology, VoI. T. no. 419-206.
A.S.Otis, An Absolute Point Scale for tho Croup Ifeasure ment of Intelligence. Joumal of Pducational Psychologys Vol. IX, Nos. 5 ancl G, May-June, 2918
L. I. Thurstone, A Scorint llethod for Ilenter ITests, Psy. Bull. Tol.XVI. No. 7, July 10us.
T. I.Kelley, The Reliability of Tost Scoren J. Fd. Research Vo1.III, $110.5,2.379,19 y 1231$
A.S.Otis and H.E.Knollin, Phe Reliability of tho Binet Scale ant Podarjominal ScaIes, JI.Th. Rescerch., ToI. IV, No. z 121. Sopt. 1021

Bibliomanhy - Taxts

 Sons, Yos rorks 220
D.C.Jonea. A Firat Courco in Stutistios, G. Boll wad Sons Iondon: ana

APPINDIX A

Correlation Tables for Reliability Cocfficients

> SOOD OT TRBIANT PORI B (TIRSI TIIAL)

$M_{A}=101.74 \pm 1.79$
$M_{B}=84.11 \pm 1.96$
$M_{A}-M_{B}=17.63 \pm 2.65$
\therefore grain is significant
$\sigma_{B}=33.79 \pm 1.39$
$\sigma_{A}=30.91 \pm 1.27$
$\overline{\sigma_{B}}-\sigma_{A}=2.88 \pm 1.88$

$$
\begin{aligned}
& M_{A}=161.00 \pm 1.20 \\
& M_{B}=148.19 \pm 1.40 \\
& M_{A}-M_{B}=12.81 \pm 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{B}=24.12 \pm 0.99 \\
& \sigma_{A}=20.63 \pm 0.85 \\
& \overline{\sigma_{B}-\sigma_{A}}=3.49 \pm 1.30
\end{aligned}
$$

\therefore getn is afonifioant
\therefore diffomay wo significant

$M_{A}=102.41 \pm 1.37$
$M_{B}=87.15 \pm 1.56$
$M_{A}-M_{13}=15.26 \pm 2.08$
\therefore gin is simaficont

$$
\begin{aligned}
& \sigma_{B}=26.95 \pm 1.11 \\
& \sigma_{A}=23.54 \pm 0.97 \\
& \overline{\sigma_{B}-\sigma_{A}}=3.41 \pm 1.47
\end{aligned}
$$

$M_{A}=60.00 \pm 1.14$
$M_{B}=60.34 \pm 1.14$
$M_{A}-M_{B}=-0.34 \pm 1.60$
$\sigma_{B}=19.73 \pm 0.81$
$\sigma_{A}=19.66 \pm 0.81$
$\overline{\sigma_{B}-\sigma_{A}}=0.07 \pm 1.15$
\therefore loss is incimisiont

COFPELATTON TABLTE TOR ACCURACY OT TERTAT TORI A MITM

$$
\begin{aligned}
& M_{A}=0.633 \pm 0.007 \\
& M_{B}=0.585 \pm 0.008 \\
& M_{A}-M_{B}=0.048 \pm 0.011
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{B}=0.1322 \pm 0.0054 \\
& \sigma_{A}=0.1237 \pm 0.0051 \\
& \sigma_{B}-\sigma_{A}=0.0085 \pm 0.007
\end{aligned}
$$

APPEIDIX B

Theonens Rolating to Corrolution
Notations
$X, y, Z \ldots$ varioblos fron arbitwory oririns
$x, y, 2 \ldots$... Totimbles fron rempectivo mons
$M_{x_{1}}$. . nema of the trarioblen X,
σ_{x}, \ldots strndaxd devistions of x, \ldots.
$V_{x}, \ldots . P^{\prime}$ Pexson's coofficiont of variobility, $\frac{100 \mathrm{G}}{\mathrm{M}}$
$\Omega_{x y} \ldots$.... mroduct mononts comrelation
$\Sigma \ldots$.... sum of such curntitios ess
N fromuncy of the ponvalation
a, b, c, \ldots constents

Theorom 2. Mo correlation botreon tro veriables is the
seme of that botwon onv tro Iiners functione of erch of
then i.o.
(1) $\Omega_{(a X+b)(c Y+d)}=\Omega_{x y}(a, c \neq 0)$

Trensforwing the raxiables to their respoctivo means,

$$
\begin{aligned}
& \Omega_{(a x+b)}(c \gamma+d)=\Omega_{(a y)(c y)} \\
&=\sum a x c y \\
& \sqrt{\Sigma a^{2} x^{2} \sum c^{2} y^{2}} \\
&=\frac{\sum x y}{\sqrt{\Sigma x^{2} \Sigma y^{2}}} \\
&=\eta_{x y}
\end{aligned}
$$

Theoren 2. The corrolation botroen tro yation $\frac{X}{\gamma}$ and $\frac{z}{W}$ is civen by the forme.
(2) $\Omega_{x} \frac{x}{y}=\frac{\Omega_{x z} V_{x} V_{z}+\Omega_{y w} V_{y} V_{w}-\Omega_{x w} V_{x} V_{w}-\Omega_{y z} V_{y} V_{z}}{\sqrt{\left[V_{x}^{2}-2 \Omega_{x y} V_{x} V_{y}+V_{y}^{2}\right]\left[V_{z}^{2}-2 \Omega_{z w} V_{z} V_{w}+V_{w}^{2}\right]}}$

The meens and rtondard dovistions of $\frac{X}{Y}$ are civon by

 $2+2+2+2$

equations (0) and (10) in Pule,
(a) $\quad M_{X}=\frac{M_{X}}{M_{Y}}\left(1-M_{X r} V_{X} V_{Y}+V_{Y}^{2}\right)$
(b) $\quad \sigma_{\frac{x}{\gamma}}^{2}=\frac{M_{X}^{2}}{M_{Y}^{2}}\left(V_{X}^{2}-2 Z_{X Y} V_{X} V_{Y}+V_{Y}^{2}\right)$

The renuiroc correlation $\Omega \frac{x z}{y w}$ will then be given by

$$
\begin{aligned}
N \prod_{\frac{x}{Y}} \frac{z}{W} O_{\frac{x}{Y}} O_{\frac{z}{W}} & =\sum\left(\frac{x}{Y}-M_{\frac{x}{Y}}\right)\left(\frac{z}{W}-M_{w}^{z}\right) \\
& =\sum\left(\frac{x}{Y} \frac{z}{W}\right)-N M_{\frac{x}{Y}} M_{\frac{z}{w}}^{z} \\
& =\frac{M_{x}}{M_{Y}} \frac{M_{z}}{M_{W}} \sum\left(1+\frac{x}{M_{x}}\right)\left(1+\frac{4}{M_{y}}\right)\left(1+\frac{z}{M_{2}}\right)^{-1}\left(1+\frac{w}{M_{w}}\right)^{-1}-N M_{\frac{x}{r}} M_{\frac{z}{w}}
\end{aligned}
$$

Bxpandinp: neglecting terms hi cher then the second degree and substituting form (a) and (0) gives (i).

Fommia (2) gives satisfactory results for fairly Ions series, but for very short ones, cansidoreble error occurs due no doubt to ner?ecting tho higher powers in the expansions of the binomials.
Theorem 3. If $X=a Y+b Z$, the partial correlations between the variables may be written,

$$
\begin{aligned}
& \Omega_{X Y \cdot z}=+1 . \\
& \Omega_{X Z \cdot y}=+1 . \\
& \Omega_{Y Z} \cdot \lambda=-1 .
\end{aligned}
$$

as is evident by inspection.
Trample: Since $A=R+W, \Gamma(R W=-1$, if $A=$ court.

$$
-5,-x,=1 ;
$$

an $-404-4,-2 \pi$

$$
+
$$

Thoorom 4. Tho correlation botwoon a poriable and the sum of n others is civen by the formia.

(this owneision is a spocial asse of smonman's Goneral Formalas

$$
\Gamma\left(x_{1}+x_{2}+\cdots x_{n}\right) y=\frac{\sum x_{1} y+\sum x_{2} y_{1}+\cdots \cdots x_{n} y}{N\left(x_{1}+x_{2}+\cdots x_{n}\right)}
$$

$\operatorname{since} \sigma\left(x_{1}+x_{2}+\cdots x_{n}\right)=\sqrt{\sigma_{x_{1}^{2}}^{2}+\sigma_{x_{2}}^{2}+-\sigma_{\lambda_{4}}^{2}+2\left(\eta x_{1} x_{2} \sigma_{x_{1}} \sigma_{x_{2}}+\frac{n(m-1)}{2} \text { temn }\right.}$ and $\sum x_{y}=N / x y 6 x 6 y$, the winctu hond momber abovo roducon to tho ox-roseion in (4)

Corollary If the tuadord deviations bx are all ogual

$$
\Omega_{\left(x_{1}+x_{2}+\cdots x_{n}\right)_{u}}=\frac{\Omega_{x_{1} y}+\Omega_{x_{2} y}+\cdots \rho_{x_{n} y}}{\sqrt{\left.n+21 \Omega_{x_{1} x_{2}+} \Omega_{x_{1} x_{3}+\cdots} \frac{n(n-i)}{2} \text { term }\right)}}
$$

Thoorom 5. The correlation botwoen the sum of n variablos and n other verieblss is rivon by the formale
(5) $\Omega_{\left(x_{1}+x_{2}+\cdots x_{n}\right)\left(x_{1}+x_{2}^{\prime}+-\lambda_{n}\right)}=\frac{\Omega_{x_{1} x_{1}} \sigma_{x_{1}} \sigma_{x_{i}}+\Omega_{x_{1} x_{2}^{\prime}-\sigma_{x}} \sigma_{x_{2}^{\prime}}+\cdots \text { to } n^{2} \text { terms }}{\sqrt{\left[\sigma_{x_{1}}^{2} \cdots-\sigma_{x_{n}^{2}}^{2}+2\left(\Omega x_{1} x_{2} \sigma \sigma_{1} \sigma_{x_{2}}+\cdots\right)[\right.}\left[\sigma_{\left.x_{1}^{2}+\sigma_{i n}^{2}+2(\cdots)\right]}\right.}$

Who arooi is similar to (4)
Corollayy 2o If tho stonthm doviations σ_{x} are all oqual
(6) $\Omega_{n n}=\frac{\Omega_{x_{1} x_{1}^{\prime}}+\Omega_{x_{1} x_{2}^{\prime}}+\cdots-\frac{n^{2} \operatorname{termes}}{\left.\sqrt{\left[n+2\left(\Omega_{x_{1} x_{2}}+-\frac{n(n-1)}{2} \operatorname{sinm}\right]\right.}\right]\left[n+2\left(\Omega x_{1}^{\prime} x_{2}^{\prime}+\frac{n\left(n-\frac{n}{2}\right) \operatorname{ten}}{}\right)\right]}}{}$ where $\ln x$ nonges the loft han anion of (3).
 p. 117.
b. Cospoozmang 2oc. cit.

Corollary 2. If the correlations $\wedge_{x x}$ ire 2.11 equal.
equation (6) may be mitten
(7)

$$
\Omega_{n x}=\frac{n \Omega_{x x}}{1+(n-1) \Omega_{x x}}
$$

This is Brown's Theorem, but as show above it is merely a special case of Spearman's General Formula.

SEW ARE OT LOSS REPLACEMENT PRICE QVER (FIFTEEN DENTS

PER PAGE
Receipt for retian given if requeaterd.

[^0]: F.S. Brood and J.R. Broslich, Tntellirence rosts and the Classipication of Punils,School Teviem, To1. XXX(Jan.1222)51-66

[^1]: bridmo Iniversity Press, London, 1211
 b. C. Spowman, Corrolction of Surs and Difformeos. Brit. Jour. of P8yo: Vol.5. 412 man

